• Title/Summary/Keyword: Self-tuning Fuzzy Controller

Search Result 121, Processing Time 0.024 seconds

Genetically optimized self-tuning Fuzzy-PI controller for HVDC system (HVDC 시스템을 위한 진화론적으로 최적화된 자기 동조 퍼지제어기)

  • Wang, Zhong-Xian;Yang, Jueng-Je;Ahn, Tae-Chon
    • Proceedings of the KIEE Conference
    • /
    • 2006.04a
    • /
    • pp.279-281
    • /
    • 2006
  • In this paper, we study an approach to design a self-tuning Fuzzy-PI controller in HVDC(High Voltage Direct Current) system. In the rectifier of conversional HVDC system, turning on, turning off, triggering and protections of thyristors have lots of problems that can make the dynamic instability and cannot damp the dynamic disturbance efficiently. The above problems are solved by adapting Fuzzy-PI controller for the fire angle control of rectifier.[7] The performance of the Fuzzy-PI controller is sensitive to the variety of scaling factors. The design procedure dwells on the use of evolutionary computing(Genetic Algorithms, GAs). Then we can obtain the optimal scaling factors of the Fuzzy-PI controller by Genetic Algorithms. In order to improve Fuzzy-PI controller, we adopt FIS to tune the scaling factors of the Fuzzy-PI controller on line. A comparative study has been performed between Fuzzy-PI and self-tuning Fuzzy-PI controller, to prove the superiority of the proposed scheme.

  • PDF

Self-Tuning Method for Fuzzy Controller (퍼지제어기의 자기동조 방법에 관한 연구)

  • Choi, Han-Soo;Kim, Sung-Joong
    • Proceedings of the KIEE Conference
    • /
    • 1993.07a
    • /
    • pp.218-220
    • /
    • 1993
  • This paper deals with a self-tuning fuzzy controller. The fuzzy controller is constructed with linguistic rules which consist of the fuzzy variables and fuzzy sets. Each of fuzzy sets is characterized by a membership function. The tuning fussy controller has paramemters to effect control output. In this paper we propose tuning method for the scaling factor. Computer simulations carried out on a second-order process will show how the present tuning approach improves the transient and steady-state characteristics of the overall system.

  • PDF

Load Frequency Control of Power System using a Self-tuning Fuzzy PID Controller (자기조정 퍼지 PID제어기를 이용한 전력시스템의 부하주파수 제어)

  • 이준탁
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.23 no.1
    • /
    • pp.40-46
    • /
    • 1999
  • A self-tuning FPID(Fuzzy Proportional Intergral Derivative) controller fo load frequency control of 2-area power systemis proposed in this paper. The paramters of the proposed self-tuning FPID controller are self-tuned by the proposed fuzzy inference technique. Therefore in this paper the fuzzy inference technique of PID gains using PSGM(Product Sum Gravity Method) is presented and is applied to the load frequency control of 2-area power system. The computer simulation results show that the proposed controller give better more control characteristics than convention-al PID, FLC under load changes.

  • PDF

Position Control of Shape Memory Alloy Actuators Using Self Tuning Fuzzy PID Controller

  • Ahn Kyoung-Kwan;Nguyen Bao Kha
    • International Journal of Control, Automation, and Systems
    • /
    • v.4 no.6
    • /
    • pp.756-762
    • /
    • 2006
  • Shape Memory Alloy(SMA) actuators, which have the ability to return to a predetermined shape when heated, have many potential applications such as aeronautics, surgical tools, robotics and so on. Although the conventional PID controller can be used with slow response systems, there has been limited success in precise motion control of SMA actuators, since the systems are disturbed by unknown factors beside their inherent nonlinear hysteresis and changes in the surrounding environment of the systems. This paper presents a new development of a SMA position control system by using a self-tuning fuzzy PID controller. This control algorithm is used by tuning the parameters of the PID controller thereby integrating fuzzy inference and producing a fuzzy adaptive PID controller, which can then be used to improve the control performance of nonlinear systems. The experimental results of position control of SMA actuators using conventional and self-tuning fuzzy PID controllers are both included in this paper.

The Design of a Fuzzy Adaptive Controller for the Process Control (공정제어를 위한 퍼지 적응제어기의 설계)

  • Lee Bong Kuk
    • Journal of the Korean Institute of Telematics and Electronics B
    • /
    • v.30B no.7
    • /
    • pp.31-41
    • /
    • 1993
  • In this paper, a fuzzy adaptive controller is proposed for the process with large delay time and unmodelled dynamics. The fuzzy adaptive controller consists of self tuning controller and fuzzy tuning part. The self tuning controller is designed with the continuous time GMV (generalized minimum variance) using emulator and weighted least square method. It is realized by the hybrid method. The controller has robust characteristics by adapting the inference rule in design parameters. The inference processing is tuned according to the operating point of the process having the nonlinear characteristics considering the practical application. We review the characteristics of the fuzzy adaptive controller through the simulation. The controller is applied to practical electric furnace. As a result, the fuzzy adaptive controller shows the better characteristics than the simple numeric self tuning controller and the PI controller.

  • PDF

Performance analysis of learning algorithm for a self-tuning fuzzy logic controller (자기 동조 퍼지 논리 제어기를 위한 학습 알고리즘의 성능 분석)

  • 정진현;이진혁
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.19 no.11
    • /
    • pp.2189-2198
    • /
    • 1994
  • In this paper, a self-tuning fuzzy logig controller is implemented to control a DC servo motor by the self-tuning technique based on fuzzy meta-rules with learning in several algorithms to improve the performance of the fuzzy logic controller used in a fuzzy control system. Simulations and experimental results of the self-tuning fuzzy logic controller are compared with those of the fuzzy logic controller to evaluate its performance.

  • PDF

A Self-Tuning Fuzzy Controller for Torque and RPM Control of a Vehicle Engine

  • Seon, Kwon-Seok;Na, Seung-You
    • Proceedings of the Korean Institute of Intelligent Systems Conference
    • /
    • 1995.10b
    • /
    • pp.25-28
    • /
    • 1995
  • A Practical application of self-tuning fuzzy controller to a multi-input multi-output complex system of a vehicle engine is investigated. The ovjective is to design a controller to improve the transient performance in torque and RPM mode changes. For the performance improvement in the multivariable comples system, the self-tuning function of internal parameters is essential and practical. The measured output variables using different control schemes are compared the advanteges of the self-tuning fuzzy logic controller are better output performances and the effectiveness in the controller design using many parameters.

  • PDF

A Fuzzy Intelligent Cruise Controller using a Self-tuning Method (자기 조절 기능을 갖는 퍼지 지능 순항 제어기 개발)

  • Lee, Gu-Do;Kim, Sang-Woo
    • Proceedings of the KIEE Conference
    • /
    • 1997.07b
    • /
    • pp.499-503
    • /
    • 1997
  • In this paper, we present a fuzzy ICC using a self-tuning method. To provide robustness and adaptiveness over the vehicle nonlinearities and changes of the driving environments, an on-line self-tuning scheme based on 'Interior Penalty Function' was developed. Road test and computer simulation results verify the feasible performance of the suggested ICC algorithm.

  • PDF

Implementation of Self-Tuning Fuzzy Control System for Robust Speed Control of an Induction Motor (유도 전동기의 견실한 속도 제어를 위한 자기 조정 퍼지 제어 시스템의 구현)

  • 송호신;이오결;이준탁;우정인
    • The Transactions of the Korean Institute of Electrical Engineers
    • /
    • v.43 no.2
    • /
    • pp.346-349
    • /
    • 1994
  • In this paper, we implemented the variable spped controller of an induction motor using the self-tuning fuzzy control algorithms, which recently is invoking the remarkable interest. Also we preposed a self-tuning technique of scale factors which could easily design the fuzzy speed controller. Comparing with conventional PI speed controller, the performances of proposed fuzzy controller such as dynamic responses and its the robustness against load disturbance were substantially improved.

A Study of Position Control Performance Enhancement in a Real-Time OS Based Laparoscopic Surgery Robot Using Intelligent Fuzzy PID Control Algorithm (Intelligent Fuzzy PID 제어 알고리즘을 이용한 실시간 OS 기반 복강경 수술 로봇의 위치 제어 성능 강화에 관한 연구)

  • Song, Seung-Joon;Park, Jun-Woo;Shin, Jung-Wook;Lee, Duck-Hee;Kim, Yun-Ho;Choi, Jae-Soon
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.57 no.3
    • /
    • pp.518-526
    • /
    • 2008
  • The fuzzy self-tuning PID controller is a PID controller with a fuzzy logic mechanism for tuning its gains on-line. In this structure, the proportional, integral and derivative gains are tuned on-line with respect to the change of the output of system under control. This paper deals with two types of fuzzy self-tuning PID controllers, rule-based fuzzy PID controller and learning fuzzy PID controller. As a medical application of fuzzy PID controller, the proposed controllers were implemented and evaluated in a laparoscopic surgery robot system. The proposed fuzzy PID structures maintain similar performance as conventional PID controller, and enhance the position tracking performance over wide range of varying input. For precise approximation, the fuzzy PID controller was realized using the linear reasoning method, a type of product-sum-gravity method. The proposed controllers were compared with conventional PID controller without fuzzy gain tuning and was proved to have better performance in the experiment.