• Title/Summary/Keyword: Self-reinforced

Search Result 328, Processing Time 0.025 seconds

Analytical Study of Flexural Behavior on Steel Fiber Reinforced Concrete Structure (SFRC구조물의 휨거동에 관한 해석적 연구)

  • Seo, Seung-Tag
    • Journal of the Korean Society of Industry Convergence
    • /
    • v.11 no.1
    • /
    • pp.35-40
    • /
    • 2008
  • Various characters of the concrete are greatly improved as the effect of the steel fiber. As the improvement effect of the steel fiber, the increment in flexural strength, shear strength, toughness, and impact strength are remarkable, and tenacious concrete is obtained. This paper presents model which can predict mechanical behavior of the structure according to aspect ratio and volume fraction of steel fiber. Experiments on compressive strength, elastic modulus and tensile strength were performed with self-made cylindrical specimens of variable aspect ratios. This paper presents an analytical study on the behavior of a beam specimen with steel fiber reinforced concrete(SFRC). The effect of the SFRC on the crack pattern, failure mode and the flexural behavior of the structure were investigated. The analysis model based on the nonlinear layered finite element method was successfully able to find the necessary amount of steel fibers, tensile steels and beam section which can best approximate flexural strength and ductility of a given conventionally reinforced concrete beam.

  • PDF

Strength of FRP RC sections after long-term loading

  • Pisani, M.A.
    • Structural Engineering and Mechanics
    • /
    • v.15 no.3
    • /
    • pp.345-365
    • /
    • 2003
  • The adoption of fibre reinforced polymer (FRP) rebars (whose behaviour is elastic-brittle) in reinforced concrete (RC) cross sections requires the assessment of the influence of time-dependent behaviour of concrete on the load-carrying capacity of these sections. This paper presents a method of computing the load-carrying capacity of sections that are at first submitted to a constant long-term service load and then overloaded up to ultimate load. The method solves first a non-linear visco-elastic problem, and then a non-linear instantaneous analysis up to ultimate load that takes into account the self-equilibrated stress distribution previously computed. This method is then adopted to perform a parametric analysis that shows that creep and shrinkage of concrete increase the load-carrying capacity of the cross section reinforced with FRP and allows for the suggestion of simple design rules.

Teaching learning-based optimization for design of cantilever retaining walls

  • Temur, Rasim;Bekdas, Gebrail
    • Structural Engineering and Mechanics
    • /
    • v.57 no.4
    • /
    • pp.763-783
    • /
    • 2016
  • A methodology based on Teaching Learning-Based Optimization (TLBO) algorithm is proposed for optimum design of reinforced concrete retaining walls. The objective function is to minimize total material cost including concrete and steel per unit length of the retaining walls. The requirements of the American Concrete Institute (ACI 318-05-Building code requirements for structural concrete) are considered for reinforced concrete (RC) design. During the optimization process, totally twenty-nine design constraints composed from stability, flexural moment capacity, shear strength capacity and RC design requirements such as minimum and maximum reinforcement ratio, development length of reinforcement are checked. Comparing to other nature-inspired algorithm, TLBO is a simple algorithm without parameters entered by users and self-adjusting ranges without intervention of users. In numerical examples, a retaining wall taken from the documented researches is optimized and the several effects (backfill slope angle, internal friction angle of retaining soil and surcharge load) on the optimum results are also investigated in the study. As a conclusion, TLBO based methods are feasible.

A Study on the Development of Concrete showing Self-damage (자기 손상을 나타내는 콘크리트의 개발 연구)

  • 박신일;박준영;전철송;임병호;김화중
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2000.10a
    • /
    • pp.129-133
    • /
    • 2000
  • The purpose of this paper is to develope concrete which presents self-damage as soon as the crack by external force occur. In experiment, when concrete specimens inserted glass filled with mixed liquid into were loaded, glass tube was break and crack around became red color. Failure properties were investigated according to type, location of sensor and existence of reinforced bar.

  • PDF

The Effects of a BSE(Breast Self-Examination) Education Program on Knowledge, Self-Efficacy and Performance Level in Female Nursing Students (간호대학생에게 제공한 유방자가검진 교육이 지식, 자기효능감 및 수행에 미치는 효과)

  • Yang, Young-Hee
    • The Journal of Korean Academic Society of Nursing Education
    • /
    • v.13 no.2
    • /
    • pp.277-283
    • /
    • 2007
  • Purpose: The purpose of this study was to determine the effect of BSE education and practice on knowledge, self efficacy and performance in female nursing students. Method: The subjects consisted of 40 students from 2 nursing colleges. They responded to questionnaires that included knowledge, self-efficacy and performance of BSE within a 3-month interval. The experimental group was subjected to a 90 minute-educational session. Their knowledge of BSE was measured using Choi's tool and self-efficacy was measured using Champion and Scott. Result: Self-efficacy and frequency of BSE performance in the experimental group were significantly higher than those of the control group while BSE knowledge was not significantly different between the two groups. Conclusion: Nursing students don't put their knowledge into practice. This fact suggests that changing a behavior needs something more than knowledge. In this study, the BSE education had an effect on self-efficacy and performance. Therefore, practical education needs to be reinforced for nursing students to perform BSE for their own health and to be able to demonstrate it for clients.

  • PDF

Behavior of Jointed Concrete Pavement by Box Culvert and Reinforced Slab (박스형 암거와 보강슬래브에 의한 줄눈 콘크리트 포장의 거동)

  • Park, Joo Young;Sohn, Dueck Su;Lee, Jae Hoon;Yan, Yu;Jeong, Jin Hoon
    • International Journal of Highway Engineering
    • /
    • v.14 no.6
    • /
    • pp.25-35
    • /
    • 2012
  • PURPOSES : Hollows are easily made, and bearing capacity can be lowered near underground structures because sublayers of pavement settle for a long time due to difficult compaction at the position. If loadings are applied in this condition, distresses may occur in pavement and, as the result, its lifespan can decrease due to the stress larger than that expected in design phase. Although reinforced slab is installed on side of box culvert to minimize the distresses, length of the reinforced slab is fixed as 6m in Korea without any theoretical consideration. The purpose of this paper is investigating the behavior of concrete pavement according to the cover depth of the box culvert ad the length of the reinforced slab. METHODS : The distresses of concrete pavement slabs were investigated and cover depth was surveyed at position where the box culverts were located in expressways. The concrete pavements including the box culverts were modeled by finite element method and their behaviors according to the soil cover depth were analyzed. Wheel loading was applied after considering self weight of the pavement and temperature gradient of the concrete pavement slab at Yeojoo, Gyeonggi where a test road was located. After installing pavement joint at various positions, behavior of the pavement was analyzed by changing the soil cover depth and length of the reinforced slab. RESULTS : As the result, the tensile stress developed in the pavement slab according to the joint position, cover depth, and reinforced slab length was figured out. CONCLUSIONS : More reasonable and economic design of the concrete pavement including the box culvert is expected by the research results.

Numerical Investigation of the Density and Inlet Velocity Effects on Fiber Orientation Inside Fresh SFRSCC (SFRSCC의 섬유 방향성에 미치는 입구 속도와 점성의 영향성에 대한 수치해석)

  • Azad, Ali;Lee, Jong-Jae;Lee, Jong-Han;Lee, Gun-Jun;An, Yun-Kyu
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.22 no.3
    • /
    • pp.16-20
    • /
    • 2018
  • Steel Fiber reinforced self-compacting concrete (SFRSCC) has been widely used in a number of structures, such as ordinary civil infrastructures, sky scrapers, nuclear power plants, hospitals, dams, channels and etc. Thanks to its short and discrete reinforcing fibers, its performance, including tensile strength, ductility, toughness and flexural strength gets much better in comparison with ordinary self-compacting concrete (SCC) without any reinforcing fibers. Despite all these aforementioned advantages of SFRSCC, its performance highly depends on fiber's orientation. In case of short discrete fibers, the orientation of fibers is completely random and cannot be controlled during pumping process. If fibers distribution inside hardened state concrete are randomly distributed, it leads to less resistance potential of concrete element, especially in terms of flexural and tensile strength. The maximum expected strength may not be achieved. Therefore, fiber alignment has been considered as one of the important factors in SFRSCC. To address this issue, this study investigates the effects of concrete matrix's density and inlet velocity on fiber alignment during the pumping process using a finite element method.

A Study on Body Image, Self-esteem, and Family Strengths of Female University Students (여대생이 지각한 신체상과 자존감, 가족건강성 관계연구)

  • Seo, Young-Sook;Son, Yu-Lim
    • Journal of Korean Clinical Health Science
    • /
    • v.2 no.2
    • /
    • pp.90-97
    • /
    • 2014
  • Purpose. The purpose of this study was to investigate the relationship between body image, self-esteem, and family strengths in female university students. Methods. One hundred ninety nine female university students participated in data collection. Data on body image, self-esteem, and family strengths were collected via questionnaire between April 2013 and May 2013. Data analysis was done using PASW 18.0 program and included one-way ANOVA, independent t-test and Pearson correlation coefficients analysis. Results. The mean score of body image was 24.20, self-esteem was 25.30, and family strengths was 83.71. Results showed a positive correlation among body image and self-esteem(r=.19, p<.001), and family strengths(r=.16, p<.001). Conclusion. The results indicate that it is necessary to increase body image, self-esteem, and family strengths among female university students. To ensure resonable body image in female university students, self-esteem, and family strengths should be reinforced.

Thermal Characteristics of Hybrid Composites for Application to Surfboard (서프보드 적용을 위한 하이브리드 복합재료의 열적 특성)

  • Kim, Yun-Hae;Lee, Jin-Woo;Park, Chang-Wook;Park, Soo-Jeong
    • Journal of Ocean Engineering and Technology
    • /
    • v.28 no.4
    • /
    • pp.351-355
    • /
    • 2014
  • Today, carbon fibers are used as heating elements. Carbon fibers are generally used to reinforce composite materials because they are lightweight and have a high strength and modulus. Carbon fiber reinforced composite materials are used for aerospace, automobile, and wind turbine blade applications. This work explored the possibility of using carbon fiber reinforced composite materials as self heating materials. The temperatures of the carbon fiber reinforced composites were measured. These results verified that the carbon fiber reinforced composite materials could be used as heating elements. A glass fiber was laminated using various methods. The thermal characteristics of the composites were evaluated. This confirmed that the generation of heat varied according to the lamination thicknesses of the carbon fiber and glass fiber. As the number of carbon fiber laminations increased, the heat-generating temperature increased. In contrast, as the number of glass fiber laminations increased, the amount of heat decreased. The generation of heat and ability to remain warm could be controlled by controlling the carbon fiber and glass fiber laminations.

Damage Monitoring of CP-GFRP/GFRP Composites by Measuring Electrical Resistance

  • Shin, Soon-Gi;Kwon, Yong-Jung
    • Korean Journal of Materials Research
    • /
    • v.20 no.3
    • /
    • pp.148-154
    • /
    • 2010
  • It is necessary to develop new methods to prevent catastrophic failure of structural material in order to avoid accidents and conserve natural and energy resources. Design of intelligent materials with a self-diagnosing function to prevent fatal fracture of structural materials was achieved by smart composites consisting of carbon fiber tows or carbon powders with a small value of ultimate elongation and glass fiber tows with a large value of ultimate elongation. The changes in electrical resistance of CF-GFRP/GFRP (carbon fiber and glass fiber-reinforced plastics/glass fiber-reinforced plastics) composites increased abruptly with increasing strain, and a tremendous change was seen at the transition point where carbon fiber tows were broken. Therefore, the composites were not to monitor damage from the early stage. On the other hand, the change in electrical resistance of CP-GFRP/GFRP (carbon powder dispersed in glass fiber-reinforced plastics/glass fiber-reinforced plastics) composites increased almost linearly in proportion to strain. CP-GFRP/GFRP composites are superior to CF-GFRP/GFRP composites in terms of their capability to monitor damage by measuring change in electrical resistance from the early stage of damage. However, the former was inferior to the latter as an application because of the difficulties of mass production and high cost. A method based on monitoring damage by measuring changes in the electrical resistance of structural materials is promising for improved reliability of the material.