• Title/Summary/Keyword: Self-organizing fuzzy control

Search Result 83, Processing Time 0.027 seconds

A Simulation of "Self-Organizing Fuzzy Controller" for a Dynamic System under Irregular Disturbance (확률론적 가진을 받는 동적계에 대한 자기구성 퍼지제어기의 구현)

  • Yeo, Woon-Joo;Oh, Yong-Sul;Jung, Quen-Yong;Heo, Hoon
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2003.05a
    • /
    • pp.1058-1062
    • /
    • 2003
  • This paper proposes a self-organizing fuzzy controller (SOFC) design technique applied to the vibration control of a dynamic system under irregular disturbance. In this controller, the fuzzy rules generate control signal continuously using the array of input and output pairs without using any special controller model. The generated rules are saved in the fuzzy rule matrix in real-time by self-organizing methods. This fuzzy logic control is demonstrated by simulation and shows the efficiency of the real-time self-organizing fuzzy controller in this system.

  • PDF

A fuzzy dynamic learning controller for chemical process control

  • Song, Jeong-Jun;Park, Sun-Won
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1991.10b
    • /
    • pp.1950-1955
    • /
    • 1991
  • A fuzzy dynamic learning controller is proposed and applied to control of time delayed, non-linear and unstable chemical processes. The proposed fuzzy dynamic learning controller can self-adjust its fuzzy control rules using the external dynamic information from the process during on-line control and it can create th,, new fuzzy control rules autonomously using its learning capability from past control trends. The proposed controller shows better performance than the conventional fuzzy logic controller and the fuzzy self organizing controller.

  • PDF

A novel self-organizing fuzzy plus PID type controller with application to inverted pendulum control (PID와 자동 학습 퍼지 제어기를 이용한 도립 전자의 제어)

  • 이용노;김태원;서일홍;김기엽
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1991.10a
    • /
    • pp.681-686
    • /
    • 1991
  • In this paper, a novel self-organizing fuzzy plus PID control algorithm is proposed and analyzed by extensive computer simulations and experiments with an inverted pendulum. Specifically, the proposed self-organizing fuzzy controller consists of a typical fuzzy reasoning part and self organizing part in which both on-line and off-line algorithms are employed to modify the 'then' part of the fuzzy rules and to decide how much fuzzy rules are to be modified after evaluating the control performance, respecfively. And the fuzzy controller is replaced by a PID controller in a prespecified region near by the set point for good settling actions.

  • PDF

Implementation of Real-Time Fuzzy Controller for SCARA Type Dual-Arm Robot (스카라형 이중 아암 로봇의 실시간 퍼지제어기 실현)

  • Kim Hong-Rae;Han Sung-Hyun
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.10 no.12
    • /
    • pp.1223-1232
    • /
    • 2004
  • We present a new technique to the design and real-time implementation of fuzzy control system basedon digital signal processors in order to improve the precision and robustness for system of industrial robot in this paper. The need to meet demanding control requirement in increasingly complex dynamical control systems under significant uncertainties, leads toward design of intelligent manipulation robots. The TMS320C80 is used in implementing real time fuzzy control to provide an enhanced motion control for robot manipulators. In this paper, a Self-Organizing Fuzzy Controller for the industrial robot manipulator with a actuator located at the base is studied. A fuzzy logic composed of linguistic conditional statements is employed by defining the relations of input-output variables of the controller. In the synthesis of a Fuzzy Logic Controller, one of the most difficult problems is the determination of linguistic control rules from the human operators. To overcome this difficult Self-Organizing Fuzzy Controller is proposed for a hierarchical control structure consisting of basic and high levels that modify control rules. The proposed Self-Organizing Fuzzy Controller scheme is simple in structure, fast in computation, and suitable for implementation of real-time control. Performance of the SOFC is illustrated by simulation and experimental results for a Dual-Arm robot with eight joints.

Automatic Control of Coagulant Dosing Rate Using Self-Organizing Fuzzy Neural Network (자기조직형 Fuzzy Neural Network에 의한 응집제 투입률 자동제어)

  • 오석영;변두균
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.10 no.11
    • /
    • pp.1100-1106
    • /
    • 2004
  • In this report, a self-organizing fuzzy neural network is proposed to control chemical feeding, which is one of the most important problems in water treatment process. In the case of the learning according to raw water quality, the self-organizing fuzzy network, which can be driven by plant operator, is very effective, Simulation results of the proposed method using the data of water treatment plant show good performance. This algorithm is included to chemical feeder, which is composed of PLC, magnetic flow-meter and control valve, so the intelligent control of chemical feeding is realized.

Control of Glucose Concentration in a Fed-Batch Cultivation of Scutellaria baicalensis G. Plant Cells a Self-Organizing Fuzzy Logic Controller

  • Choi, Jeong-Woo;Cho, Jin-Man;Kim, Young-Kee;Park, Soo-Yong;Kim, Ik-Hwan
    • Journal of Microbiology and Biotechnology
    • /
    • v.11 no.5
    • /
    • pp.739-748
    • /
    • 2001
  • A self-organizing fuzzy logic controller using a genetic algorithm is described, which controlled the glucose concentration for the enhancement of flavonoid production in a fed-batch cultivation of Scutellaria baicalensis G. plant cells. The substrate feeding strategy in a fed-batch culture was to increase the flavonoid production by using the proposed kinetic model. For the two-stage culture, the substrate feeding strategy consisted of a first period with 28 g/I of glucose to promote cell growth, followed by a second period with 5 g/I of glucose to promote flavonoid production. A simple fuzzy logic controller and the self-organizing fuzzy logic controller using a genetic algorithm was constructed to control the glucose concentration in a fed-batch culture. The designed fuzzy logic controllers were applied to maintain the glucose concentration at given set-points of the two-stage culture in fed-batch cultivation. The experimental results showed that the self-organizing fuzzy logic controller improved the controller\`s performance, compared with that of the simple fuzzy logic controller. The specific production yield and productivity of flavonoids in the two-stage culture were higher than those in the batch culture.

  • PDF

THE FUZZY CLUSTERING ALGORITHM AND SELF-ORGANIZING NEURAL NETWORKS TO IDENTIFY POTENTIALLY FAILING BANKS

  • Lee, Gi-Dong
    • 한국디지털정책학회:학술대회논문집
    • /
    • 2005.06a
    • /
    • pp.485-493
    • /
    • 2005
  • Using 1991 FDIC financial statement data, we develop fuzzy clusters of the data set. We also identify the distinctive characteristics of the fuzzy clustering algorithm and compare the closest hard-partitioning result of the fuzzy clustering algorithm with the outcomes of two self-organizing neural networks. When nine clusters are used, our analysis shows that the fuzzy clustering method distinctly groups failed and extreme performance banks from control (healthy) banks. The experimental results also show that the fuzzy clustering method and the self-organizing neural networks are promising tools in identifying potentially failing banks.

  • PDF

A Study on the Boiler System Control of Fossil-Power Plant Using a Self-organizing Fuzzy Logic Control (자동 학습 퍼지 제어기를 이용한 발전용 보일러 시스템 제어에 관한 연구)

  • Mun, Un-Cheol
    • The Transactions of the Korean Institute of Electrical Engineers A
    • /
    • v.50 no.11
    • /
    • pp.514-519
    • /
    • 2001
  • This Paper presents an application of a on-line self-organizing fuzzy logic controller to a boiler system of fossil-power plant. A boiler-turbine system is described as a MIMO nonlinear system in this paper. Then, three single loop fuzzy logic controllers are designed independently. The control rules and the membership functions of proposed fuzzy logic control system are generated automatically without using plant model. The simulation shows successful results for wide range operation of boiler system of fossil-power plant.

  • PDF

Self-Organizing Fuzzy Control of a Flexible Joint Manipulator (유연 관절 매니퓰레이터의 자기 구성 퍼지 제어)

  • Park, J.H.;Lee, S.B.
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.12 no.8
    • /
    • pp.92-98
    • /
    • 1995
  • The position control of flexible joint manipulator is investigated by applying the self-organizing fuzzy logic controller (SOC) proposed by Procyk and Mamdani. The SOC is a heuristic rule-based controller and a further extension of an ordinary fuzzy controller, which has a hierachy structrue which consists of an algorithm being identical to a fuzzy controller at the lower ollp and a learning algorithm accomodating the performance evalution and rule modification function at the upper ollp. This form of control can be used in those complex systems which have been too difficult to control or which in the past have had to rely on the experience of a human operator. Even though the significant dynamic coupling of the motors and links on the flexible joint manipulator, the performance of command-following is good by applying the proposed SOC.

  • PDF

Self-Organizing Fuzzy Modeling Based on Hyperplane-Shaped Clusters (다차원 평면 클러스터를 이용한 자기 구성 퍼지 모델링)

  • Koh, Taek-Beom
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.7 no.12
    • /
    • pp.985-992
    • /
    • 2001
  • This paper proposes a self-organizing fuzzy modeling(SOFUM)which an create a new hyperplane shaped cluster and adjust parameters of the fuzzy model in repetition. The suggested algorithm SOFUM is composed of four steps: coarse tuning. fine tuning cluster creation and optimization of learning rates. In the coarse tuning fuzzy C-regression model(FCRM) clustering and weighted recursive least squared (WRLS) algorithm are used and in the fine tuning gradient descent algorithm is used to adjust parameters of the fuzzy model precisely. In the cluster creation, a new hyperplane shaped cluster is created by applying multiple regression to input/output data with relatively large fuzzy entropy based on parameter tunings of fuzzy model. And learning rates are optimized by utilizing meiosis-genetic algorithm in the optimization of learning rates To check the effectiveness of the suggested algorithm two examples are examined and the performance of the identified fuzzy model is demonstrated via computer simulation.

  • PDF