• Title/Summary/Keyword: Self-organizing Neural Networks

Search Result 129, Processing Time 0.026 seconds

A new Intelligent Yield Management Methodology based on Feature Manipulation (특성 변동 관리에 기반한 지능적 수율관리 방안)

  • 이장희
    • Proceedings of the Korean Society for Quality Management Conference
    • /
    • 2004.04a
    • /
    • pp.148-151
    • /
    • 2004
  • This study presents a new intelligent yield management methodology which can forecast the yield level of a production unit based on features' behaviors. In this proposed methodology, we identify the existing features using C5.0 that are combination of nodes (i.e., variables) in the decision tree generated by C5.0, use SOM(Self-Organizing Map) neural networks in oder to extract the feature's patterns and classify, and then make features' control rules using C5.0.

  • PDF

3-D Underwater Object Recognition Using Ultrasonic Sensor Fabricated with 1-3 type Piezoelectric Composites and Invariant moment (1-3형 복합압전체 초음파센서와 불변모멘트를 이용한 3차원 수중 물체인식)

  • Cho, Hyun-Chul
    • Proceedings of the KIEE Conference
    • /
    • 2000.07d
    • /
    • pp.2330-2332
    • /
    • 2000
  • In this study, 3-D underwater object recognition using ultrasonic sensor fabricated with PZT-Polymer 1-3 type composites and invariant moment vector and SOFM(Self Organizing Feature Map) neural networks are presented. The recognition rates for the training data and the testing data were 99% and 93%, respectively.

  • PDF

Determination of the Optimized Structure of Self-Organizing Map for the Rainfall-Runoff Analysis in Naju (나주지점의 강우-유출 해석을 위한 최적의 SOM 구조 결정)

  • Kim, Yong-Gu;Jin, Young-Hoon;Park, Sung-Chun;Jeong, Choen-Lee
    • Journal of Korea Water Resources Association
    • /
    • v.41 no.10
    • /
    • pp.995-1007
    • /
    • 2008
  • Studies on modeling the rainfall-runoff relationship which shows nonlinear trend strongly use artificial neural networks theory not only for the prediction but also for the characteristics analysis of the data used by pattern classification. For the pattern classification, the results from Self-Organizing Map (SOM) mention that the map size and array for the SOM training have significantly influenced on the SOM performance. Since there is no deterministic method or theoretical equation to determine the number of rows and columns for the map size, hexagonal array is generally used for the map array. Therefore, this study present a determination of the optimized map structure for the rainfall-runoff analysis in Naju station considering the map size and array simultaneously which can represent the classified characterization of rainfall-runoff relationship. The result showed that the map size of 20$\times$16 hexagonal array with 8-clustered patterns was selected as an appropriate map structure for rainfall-runoff analysis in Naju station.

Application of Self-Organizing Map Theory for the Development of Rainfall-Runoff Prediction Model (강우-유출 예측모형 개발을 위한 자기조직화 이론의 적용)

  • Park, Sung Chun;Jin, Young Hoon;Kim, Yong Gu
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.26 no.4B
    • /
    • pp.389-398
    • /
    • 2006
  • The present study compositely applied the self-organizing map (SOM), which is a kind of artificial neural networks (ANNs), and the back propagation algorithm (BPA) for the rainfall-runoff prediction model taking account of the irregular variation of the spatiotemporal distribution of rainfall. To solve the problems from the previous studies on ANNs, such as the overestimation of low flow during the dry season, the underestimation of runoff during the flood season and the persistence phenomenon, in which the predicted values continuously represent the preceding runoffs, we introduced SOM theory for the preprocessing in the prediction model. The theory is known that it has the pattern classification ability. The method proposed in the present research initially includes the classification of the rainfall-runoff relationship using SOM and the construction of the respective models according to the classification by SOM. The individually constructed models used the data corresponding to the respectively classified patterns for the runoff prediction. Consequently, the method proposed in the present study resulted in the better prediction ability of runoff than that of the past research using the usual application of ANNs and, in addition, there were no such problems of the under/over-estimation of runoff and the persistence.

Real-time monitoring sensor displacement for illicit discharge of wastewater: identification of hotspot using the self-organizing maps (SOMs) (폐수의 무단 방류 모니터링을 위한 센서배치 우선지역 결정: 자기조직화지도 인공신경망의 적용)

  • Nam, Seong-Nam;Lee, Sunghoon;Kim, Jungryul;Lee, Jaehyun;Oh, Jeill
    • Journal of Korean Society of Water and Wastewater
    • /
    • v.33 no.2
    • /
    • pp.151-158
    • /
    • 2019
  • Objectives of this study were to identify the hotspot for displacement of the on-line water quality sensors, in order to detect illicit discharge of untreated wastewater. A total of twenty-six water quality parameters were measured in sewer networks of the industrial complex located in Daejeon city as a test-bed site of this study. For the water qualities measured on a daily basis by 2-hour interval, the self-organizing maps(SOMs), one of the artificial neural networks(ANNs), were applied to classify the catchments to the clusters in accordance with patterns of water qualities discharged, and to determine the hotspot for priority sensor allocation in the study. The results revealed that the catchments were classified into four clusters in terms of extent of water qualities, in which the grouping were validated by the Euclidean distance and Davies-Bouldin index. Of the on-line sensors, total organic carbon(TOC) sensor, selected to be suitable for organic pollutants monitoring, would be effective to be allocated in D and a part of E catchments. Pb sensor, of heavy metals, would be suitable to be displaced in A and a part of B catchments.

Modeling the Properties of the PECVD Silicon Dioxide Films Using Polynomial Neural Networks

  • Han, Seung-Soo;Song, Kyung-Bin
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1998.10a
    • /
    • pp.195-200
    • /
    • 1998
  • Since the neural network was introduced, significant progress has been made on data handling and learning algorithms. Currently, the most popular learning algorithm in neural network training is feed forward error back-propagation (FFEBP) algorithm. Aside from the success of the FFEBP algorithm, polynomial neural networks (PNN) learning has been proposed as a new learning method. The PNN learning is a self-organizing process designed to determine an appropriate set of Ivakhnenko polynomials that allow the activation of many neurons to achieve a desired state of activation that mimics a given set of sampled patterns. These neurons are interconnected in such a way that the knowledge is stored in Ivakhnenko coefficients. In this paper, the PNN model has been developed using the plasma enhanced chemical vapor deposition (PECVD) experimental data. To characterize the PECVD process using PNN, SiO$_2$films deposited under varying conditions were analyzed using fractional factorial experimental design with three center points. Parameters varied in these experiments included substrate temperature, pressure, RF power, silane flow rate and nitrous oxide flow rate. Approximately five microns of SiO$_2$were deposited on (100) silicon wafers in a Plasma-Therm 700 series PECVD system at 13.56 MHz.

  • PDF

Design of Space Search-Optimized Polynomial Neural Networks with the Aid of Ranking Selection and L2-norm Regularization

  • Wang, Dan;Oh, Sung-Kwun;Kim, Eun-Hu
    • Journal of Electrical Engineering and Technology
    • /
    • v.13 no.4
    • /
    • pp.1724-1731
    • /
    • 2018
  • The conventional polynomial neural network (PNN) is a classical flexible neural structure and self-organizing network, however it is not free from the limitation of overfitting problem. In this study, we propose a space search-optimized polynomial neural network (ssPNN) structure to alleviate this problem. Ranking selection is realized by means of ranking selection-based performance index (RS_PI) which is combined with conventional performance index (PI) and coefficients based performance index (CPI) (viz. the sum of squared coefficient). Unlike the conventional PNN, L2-norm regularization method for estimating the polynomial coefficients is also used when designing the ssPNN. Furthermore, space search optimization (SSO) is exploited here to optimize the parameters of ssPNN (viz. the number of input variables, which variables will be selected as input variables, and the type of polynomial). Experimental results show that the proposed ranking selection-based polynomial neural network gives rise to better performance in comparison with the neuron fuzzy models reported in the literatures.

Development of Rainfall-Runoff Prediction Model for Self Organizing Map (SOM에 강우-유출 예측모형 개발에 관한 연구)

  • Kim, Yong-Gu;Jin, Young-Hoon;Lee, Han-Min;Park, Sung-Chun
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2006.05a
    • /
    • pp.301-306
    • /
    • 2006
  • 본 연구에서는 강우의 시 공간적 분포의 불규칙한 변동성을 고려한 강우-유출예측을 위해 인공신경망(Artificial Neural Networks: ANNs)의 기법의 일종인 자기조직화(Self Organizing Map: SOM) 이론과 역전파 학습 알고리즘(Back Propagation Algorithm: BPA) 이론을 복합적으로 이용하였다. 기존의 인공신경망 연구에서 야기된 저..갈수기의 유출량에 대한 과대평가, 홍수기의 유출량에 대한 과소평가, 예측값이 선행 유출량의 지속성을 갖는 Persistence 현상을 해결하기 위하여 패턴분류 성능을 지닌 SOM 이론을 도입하여 예측모형의 전처리 과정으로 이용하였다. 이는 기존의 인공신경망 모형이 하나의 모형을 구성하여 유출량의 전 범위에 해당하는 자료를 예측하는 방법을 개선한 것으로 SOM에 의해 패턴이 분류된 강우-유출관계의 각 패턴별 예측모형을 통해 분류된 자료들의 예측을 수행하는 방법이다. 이와 같이 SOM을 강우-유출예측모형의 전처리과정으로 이용함으로서 기존의 인공신경망 연구에서 야기된 현상들을 해결할 수 있었고, 예측력 또한 기존의 인공신경망 모형의 결과에 비해 우수하였다.

  • PDF

Off-line Handwritten Digit Recognition by Combining Direction Codes of Strokes (획의 방향 코드 조합에 의한 오프라인 필기체 숫자 인식)

  • Lee Chan-Hee;Jung Soon-Ho
    • Journal of KIISE:Software and Applications
    • /
    • v.31 no.12
    • /
    • pp.1581-1590
    • /
    • 2004
  • We present a robust off-line method recognizing handwritten digits by only using stroke direction codes as a feature of handwritten digits. This method makes general 8-direction codes for an input digit and then has the multi-layered neural networks learn them and recognize each digit. The 8-direction codes are made of the thinned results of each digit through SOG*(Improved Self-Organizing Graph). And the usage of these codes simplifies the complex steps processing at least two features of the existing methods. The experimental result shows that the recognition rates of this method are constantly better than 98.85% for any images in all digit databases.

Analysis of Two-Dimensional Fluorescence Spectra in Biotechnological Processes by Artificial Neural Networks II - Process Modeling using Backpropagation Neural Network - (인공신경망에 의만 생물공정에서 2차원 영광스펙트럼의 분석 II - 역전파 신경망에 의한 공정의 모델링 -)

  • Lee Kum-Il;Yim Yong-Sik;Sohn Ok-Jae;Chung Sang-Wook;Rhee Jong Il
    • KSBB Journal
    • /
    • v.20 no.4
    • /
    • pp.299-304
    • /
    • 2005
  • A two-dimensional (2D) spectrofluorometer was used to monitor various fermentation processes with recombinant E. coli for the production of 5-aminolevulinic acid (ALA). The whole fluorescence spectral data obtained during a process were analyed using artificial neural networks, i.e. self-organizing map (SOM) and feedforward backpropagation neural network (BPNN).Based on the classified fluorescence spectra a supervised BPNN algorithm was used to predict some of the process parameters. It was also shown that the BPNN models could elucidate some sections of the process performance, e.g. forecasting the process performance.