• 제목/요약/키워드: Self-organizing Maps

검색결과 97건 처리시간 0.027초

Validity Study of Kohonen Self-Organizing Maps

  • Huh, Myung-Hoe
    • Communications for Statistical Applications and Methods
    • /
    • 제10권2호
    • /
    • pp.507-517
    • /
    • 2003
  • Self-organizing map (SOM) has been developed mainly by T. Kohonen and his colleagues as a unsupervised learning neural network. Because of its topological ordering property, SOM is known to be very useful in pattern recognition and text information retrieval areas. Recently, data miners use Kohonen´s mapping method frequently in exploratory analyses of large data sets. One problem facing SOM builder is that there exists no sensible criterion for evaluating goodness-of-fit of the map at hand. In this short communication, we propose valid evaluation procedures for the Kohonen SOM of any size. The methods can be used in selecting the best map among several candidates.

자기 구성 지도와 은닉 마르코프 모델을 이용한 가속도 센서 기반 행동 인식 (Activity Recognition based on Accelerometer using Self Organizing Maps and Hidden Markov Model)

  • 황금성;조성배
    • 한국HCI학회:학술대회논문집
    • /
    • 한국HCI학회 2008년도 학술대회 1부
    • /
    • pp.245-250
    • /
    • 2008
  • 최근 동작 및 행동 인식에 대한 연구가 활발하다. 특히, 센서가 소형화되고 저렴해지면서 그 활용을 위한 관심이 증가하고 있다. 기존의 많은 행동 인식 연구에서 사용되어 온 정적 분류 기술 기반 동작 인식 방법은 연속적인 데이터 분류 기술에 비해 유연성 및 활용성이 부족할 수 있다. 본 논문에서는 연속적인 데이터의 패턴 분류 및 인식에 효과적인 확률적 추론 기법인 은닉 마르코프 모델(Hidden Markov Model)과 사전 지식 없이도 자동 학습이 가능하며 의미 깊은 궤적 패턴을 클러스터링하고 효과적인 양자화가 가능한 자기구성지도(Self Organizing Map)를 이용한 동작 인식 기술을 소개한다. 또한, 그 유용성을 입증하기 위해 실제 가속도 센서를 이용하여 다양한 동작에 대한 데이터를 수집하고 분류 성능을 분석 및 평가한다. 실험에서는 실제 가속도 센서를 통해 수집된 숫자를 그리는 동작의 성능 평가 결과를 보이고, 행동 인식기 별 성능과 전체 인식기별 성능을 비교한다.

  • PDF

Hybrid Self Organizing Map using Monte Carlo Computing

  • 전성해;박민재;오경환
    • 한국지능시스템학회:학술대회논문집
    • /
    • 한국퍼지및지능시스템학회 2006년도 춘계학술대회 학술발표 논문집 제16권 제1호
    • /
    • pp.381-384
    • /
    • 2006
  • Self Organizing Map(SOM) is a powerful neural network model for unsupervised loaming. In many clustering works with exploratory data analysis, it has been popularly used. But it has a weakness which is the poorly theoretical base. A lot more researches for settling the problem have been published. Also, our paper proposes a method to overcome the drawback of SOM. As compared with the presented researches, our method has a different approach to solve the problem. So, a hybrid SOM is proposed in this paper. Using Monte Carlo computing, a hybrid SOM improves the performance of clustering. We verify the improved performance of a hybrid SOM according to the experimental results using UCI machine loaming repository. In addition to, the number of clusters is determined by our hybrid SOM.

  • PDF

새로운 음성 인식 모델 : 동적 국부 자기 조직 지도 모델 (A New Speech Recognition Model : Dynamically Localized Self-organizing Map Model)

  • 나경민;임재열;안수길
    • The Journal of the Acoustical Society of Korea
    • /
    • 제13권1E호
    • /
    • pp.20-24
    • /
    • 1994
  • 이 논문에서는 새로운 음성 인식 모델인 동적 국부 자기 조직 지도 모델과 그 학습 알고리즘을 제안한다. 동적 국부 자기 조직 지도 모델은 음성의 시간적, 공간적 왜곡을 프로그래밍 기법과 국부 자기 조직 지도로 각각 정규화 시킨다. 한국어 숫자음에 대한 실험 결과로 제안하는 모델이 예측 신경회로망 모델보다 적은 수의 연결을 갖고서도 약간 높은 인식률을 보여 효과적임을 알 수 있었다.

  • PDF

하이브리드 SOM을 이용한 동적 웹 정보 추천 기법 (Dynamic Web Recommendation Method Using Hybrid SOM)

  • 윤경배;박창희
    • 정보처리학회논문지B
    • /
    • 제11B권4호
    • /
    • pp.471-476
    • /
    • 2004
  • 최근, 사용자에게 가장 필요한 정보를 제공하기 위한 웹 정보 추천 시스템에 대한 연구가 인터넷 쇼핑몰등을 대상으로 활발히 진행되고 있다. 그 중 SOM(Self-Organizing Feature Maps)을 이용한 동적 웹 정보 추천 기법은 빠른 수행 속도와 간편하게 사용할 수 있는 장점이 존재하나, 모형에 대한 설명력 부족 및 최종적으로 구축된 모형에서 출력층의 각 노드가 한 개의 가중치 값들로 고정되는 단점이 존재한다. 본 논문에서는 이러한 단점인 모형에 대한 설명력 부족을 베이지안 추론 기법으로 해결하며, 하이브리드 SOM을 이용하여 최종적으로 구축된 모형에서 출력층의 각 노드가 한 개의 가중치 값들로 고정되는 것이 아니라 가중치가 속하게 되는 분포가 결정되도록 한다. 이러한 하이브리드 SOM을 이용하여 동적 웹 정보 추천 기법을 설계하고 구현하여 기존의 웹 정보 추천 기법과 성능 비교를 수행한 결과, 제안된 기법의 우수함이 입증되었다.

내용기반 검색을 위한 SOMk-NN탐색 알고리즘 (SOMk-NN Search Algorithm for Content-Based Retrieval)

  • 오군석;김판구
    • 한국정보과학회논문지:데이타베이스
    • /
    • 제29권5호
    • /
    • pp.358-366
    • /
    • 2002
  • 특징정보를 기반으로 한 유사 이미지 검색은 이미지 데이타베이스에 있어서 중요한 과제의 하나이다. 이미지 데이타의 특징정보는 각 이미지를 식별하는데 유용한 정보이다. 본 논문에서는 자기 조직화 맵 기반의 고속 k-NN 탐색 알고리즘을 제안한다. 자기 조직화 맵은 고차원 특징벡터를 2차원 공간에 맵핑하여 위상특징 맵을 생성한다. 위상특징 맵은 입력 데이타의 특징공간과 상호관계(유사성)를 가지고 있으며, 인접노드에 서로 유사한 특징벡터가 클러스터링된다. 그러므로 위상특징 맵상의 각 노드에는 노드 벡터와 각 노드벡터에 가장 가까운 유사 이미지가 분류된다. 이러한 자기 조직화 맵에 의한 유사 이미지 분류결과에 대하여 k-NV 탐색을 구현하기 위하여, (1) 위상특징 맵에 대한 접근방법, (2) 고속탐색을 위한 pruning strategy의 적용을 실현하였다. 본 연구에서는 실험을 통하여 실제 이미지로부터 추출한 색상 특징을 사용하여 제안한 알고리즘의 성능을 평가함으로써 유사 이미지 검색에 유효한 견과를 얻을 수 있었다.

폐수의 무단 방류 모니터링을 위한 센서배치 우선지역 결정: 자기조직화지도 인공신경망의 적용 (Real-time monitoring sensor displacement for illicit discharge of wastewater: identification of hotspot using the self-organizing maps (SOMs))

  • 남성남;이성훈;김정률;이재현;오재일
    • 상하수도학회지
    • /
    • 제33권2호
    • /
    • pp.151-158
    • /
    • 2019
  • Objectives of this study were to identify the hotspot for displacement of the on-line water quality sensors, in order to detect illicit discharge of untreated wastewater. A total of twenty-six water quality parameters were measured in sewer networks of the industrial complex located in Daejeon city as a test-bed site of this study. For the water qualities measured on a daily basis by 2-hour interval, the self-organizing maps(SOMs), one of the artificial neural networks(ANNs), were applied to classify the catchments to the clusters in accordance with patterns of water qualities discharged, and to determine the hotspot for priority sensor allocation in the study. The results revealed that the catchments were classified into four clusters in terms of extent of water qualities, in which the grouping were validated by the Euclidean distance and Davies-Bouldin index. Of the on-line sensors, total organic carbon(TOC) sensor, selected to be suitable for organic pollutants monitoring, would be effective to be allocated in D and a part of E catchments. Pb sensor, of heavy metals, would be suitable to be displaced in A and a part of B catchments.

자기조직화지도 신경망을 이용한 국내 컨테이너터미널의 클러스터링 측정소고 (A Brief Clustering Measurement for the Korean Container Terminals Using Neural Network based Self Organizing Maps)

  • 박노경
    • 한국항만경제학회지
    • /
    • 제26권1호
    • /
    • pp.43-60
    • /
    • 2010
  • 본 논문에서는, 국내와 외국에서 선행된 항만분야의 SOM신경망을 이용한 클러스터 분석과 관련된 선행연구들을 간략하게 검토하였으며, 또한 국내 컨테이너터미널 8곳의 3년간(2002년, 2003년, 2004년)자료를 이용하고, 4개의 투입물[종업원수(명), 부두길이(m), 부지면적(평방m), 갠트리크레인 대수(대)])과 1개의 산출물[년간 컨테이너 처리실적(TEU)]을 이용하여 DEA방법 및 SOM신경망을 이용한 클러스터링으로 실증분석하는 방법을 보여주었으며, 그 결과가 갖는 현실적인 의미와 정책적인 함의를 제시하였다. 주요한 실증분석 결과는 다음과 같다. 첫째, DEA분석결과에 의하면, 각 터미널의 참조터미널들이 감천터미널을 제외하고 지리적으로 근접지역에 위치하고 있는 것으로 나타나서 클러스터형성이 가능하며, 시너지 효과도 얻을 수 있는 것으로 나타났다. 광양터미널들은 지리적으로 멀지만, 감만, 우암터미널들과 클러스터를 구축할 수 있는 것으로 나타났다. 둘째, SOM신경망을 이용한 클러스터링분석결과를 보면, 클러스터 1, 클러스터 2, 클러스터 3에 위치함 감만터미널, 클러스터 4에 위치하고 있는 허치슨터미널과 신선대터미널, 클러스터 5에 위치한 15개의 터미널들이 나름대로 클러스터링에 대한 의미를 가지고 있는 것으로 추정되었다. 셋째, DEA기법에 의한 참조터미널들에 의한 클러스터링과 SOM신경망에 의한 클러스터링 사이에서는 약67% 수준에서 일치하였다. 본 연구의 정책적인 함의는 첫째, 컨테이너터미널에 대한 정책입안자는 북항에 속한 자성대, 우암, 신감만, 감만 터미널은 터미널운영을 통합하는 것이 필요하다. 즉, 클러스터링의 효과를 극대화시키기 위해서는 부두운영사의 숫자를 줄여나가는 정책을 강제적으로 입안하여 시행하는 것이 가장 시급한 문제이다. 둘째, 부산북항에 위치한 터미널들의 최대약점은 터미널마다 부두운영사가 서로 달라서 화주들에게 원스톱서비스를 제공하지 못하고 있다는 점이다. 즉, 년간 물동양의 44%가 환적화물임을 감안해 보았을 때, 북항의 컨테이너 터미널들은 향후 신항과의 화물수주경쟁에서 성공하기 위해서는 반드시 클러스터링을 하는 정책을 도입해야만 한다.

SOMPS 알고리즘을 이용한 세포주기 조절 유전자 검출 (Detecting cell cycle-regulated genes using Self-Organizing Maps with statistical Phase Synchronization (SOMPS) algorithm)

  • 강용석;배철수
    • 한국산학기술학회논문지
    • /
    • 제13권9호
    • /
    • pp.3952-3961
    • /
    • 2012
  • 세포주기조절유전자를 식별하는 계산방법을 개발하는 것은 시스템 생물학의 중요한 주제중 하나이다. 이전 방법의 대부분은 세포주기 조절 유전자를 식별하는 표현신호의 주기적인 특성으로 간주한다. 그러나, 세포주기 조절유전자는 상대적으로 세포 네트워크를 기반으로 서로 활성화된 상대적으로 많은 상호 작용을 일으킨다고 가정한다. 본 연구에서는 세포주기 분석에 변수 위상동기화 이론을 적용하여, "통계적상 동기화를 이용한 자가조직지도 (SOMPS)", 즉, 자가조직지도와 다변수 통계 동기화 방법으로 이루어진 방법을 사용하여 여러 개의 하위집합과의 상호작용을 발생시키고자 한다. 평가방법으로 SOMPS방법 알고리즘이 세포주기조절 유전자를 방법으로 기존에 사용되는 방법들과 같이 유용할 것으로 보인다.

다중 동적 위상보존 자기구성 지도의 결합을 통한 필기숫자 데이타의 분류율 향상 (Improvement of Classification Rate of Handwritten Digits by Combining Multiple Dynamic Topology-Preserving Self-Organizing Maps)

  • 김현돈;조성배
    • 한국정보과학회논문지:소프트웨어및응용
    • /
    • 제28권12호
    • /
    • pp.875-884
    • /
    • 2001
  • 자기 구성지도는 데이타 시각화, 위상보존 매핑 등의 분야에서 널리 사용되고 있지만. 학습이 되기 전에 위상을 미리 고정시켜야 하기 때문에 실제 문제에 적용하기 어렵다는 것과 클러스터링 능력에 비해 분류율이 낮다는 결점이 있다. 이를 해결하기 위해서 자기구성 지도의 출력 노드를 동적으로 분화하고 분화된 노드를 파습하는 동적 위상보존 사기구성 지도를 제안하고, 이를 다중 결합함으로써 분류율을 향상 시켰다. 동적 위상보존 자기구성 지도의 결함 방법으로는 자기구성 지도의 K개 노드가 출격을 내도록하는 K-Winner 방법 및 K-Winner+ 가중치 방법이 제안되었는데, 이는 다수결 투표, 가중치, BKS, Byayesian, Borda, Condorect, 신뢰값 합산 등의 기존 결합 방법보다도 우수한 결과를 나타내었다. 동적 위상보존 자기 구성 지도를 통해서 위상을 고정 시켜야 하는 결점을 해결할 수 있었고. 서로 다른 특징으로 학습된 동적 위상보존 자기구성 지도들을 결합하여 분류 능력을 향상시킬 수 있었다. 필기 숫자데이타로. 실험한 결과, 제안한 방법이 자기구성 지도의 결점을 효과적으로 해결하여 98.1% 의 높은 인식률을 보였다.

  • PDF