• Title/Summary/Keyword: Self-organizing Maps(SOM)

Search Result 57, Processing Time 0.023 seconds

Machine-Part Grouping Formation Using Grid Computing (그리드 컴퓨팅을 이용한 기계-부품 그룹 형성)

  • Lee, Jong-Sub;Kang, Maing-Kyu
    • Journal of Korean Institute of Industrial Engineers
    • /
    • v.30 no.3
    • /
    • pp.175-180
    • /
    • 2004
  • The machine-part group formation is to group the sets of parts having similar processing requirements into part families, and the sets of machines needed to process a particular part family into machine cells using grid computing. It forms machine cells from the machine-part incidence matrix by means of Self-Organizing Maps(SOM) whose output layer is one-dimension and the number of output nodes is the twice as many as the number of input nodes in order to spread out the machine vectors. It generates machine-part group which are assigned to machine cells by means of the number of bottleneck machine with processing part. The proposed algorithm was tested on well-known machine-part grouping problems. The results of this computational study demonstrate the superiority of the proposed algorithm.

Optimization of 3D target feature-map using modular mART neural network (모듈구조 mART 신경망을 이용한 3차원 표적 피쳐맵의 최적화)

  • 차진우;류충상;서춘원;김은수
    • Journal of the Korean Institute of Telematics and Electronics C
    • /
    • v.35C no.2
    • /
    • pp.71-79
    • /
    • 1998
  • In this paper, we propose a new mART(modified ART) neural network by combining the winner neuron definition method of SOM(self-organizing map) and the real-time adaptive clustering function of ART(adaptive resonance theory) and construct it in a modular structure, for the purpose of organizing the feature maps of three dimensional targets. Being constructed in a modular structure, the proposed modular mART can effectively prevent the clusters from representing multiple classes and can be trained to organze two dimensional distortion invariant feature maps so as to recognize targets with three dimensional distortion. We also present the recognition result and self-organization perfdormance of the proposed modular mART neural network after carried out some experiments with 14 tank and fighter target models.

  • PDF

A Study on Optimal Layout of Two-Dimensional Rectangular Shapes Using Neural Network (신경회로망을 이용한 직사각형의 최적배치에 관한 연구)

  • 한국찬;나석주
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.17 no.12
    • /
    • pp.3063-3072
    • /
    • 1993
  • The layout is an important and difficult problem in industrial applications like sheet metal manufacturing, garment making, circuit layout, plant layout, and land development. The module layout problem is known to be non-deterministic polynomial time complete(NP-complete). To efficiently find an optimal layout from a large number of candidate layout configuration a heuristic algorithm could be used. In recent years, a number of researchers have investigated the combinatorial optimization problems by using neural network principles such as traveling salesman problem, placement and routing in circuit design. This paper describes the application of Self-organizing Feature Maps(SOM) of the Kohonen network and Simulated Annealing Algorithm(SAA) to the layout problem of the two-dimensional rectangular shapes.

Feature-Based Image Retrieval using SOM-Based R*-Tree

  • Shin, Min-Hwa;Kwon, Chang-Hee;Bae, Sang-Hyun
    • Proceedings of the KAIS Fall Conference
    • /
    • 2003.11a
    • /
    • pp.223-230
    • /
    • 2003
  • Feature-based similarity retrieval has become an important research issue in multimedia database systems. The features of multimedia data are useful for discriminating between multimedia objects (e 'g', documents, images, video, music score, etc.). For example, images are represented by their color histograms, texture vectors, and shape descriptors, and are usually high-dimensional data. The performance of conventional multidimensional data structures(e'g', R- Tree family, K-D-B tree, grid file, TV-tree) tends to deteriorate as the number of dimensions of feature vectors increases. The R*-tree is the most successful variant of the R-tree. In this paper, we propose a SOM-based R*-tree as a new indexing method for high-dimensional feature vectors.The SOM-based R*-tree combines SOM and R*-tree to achieve search performance more scalable to high dimensionalities. Self-Organizing Maps (SOMs) provide mapping from high-dimensional feature vectors onto a two dimensional space. The mapping preserves the topology of the feature vectors. The map is called a topological of the feature map, and preserves the mutual relationship (similarity) in the feature spaces of input data, clustering mutually similar feature vectors in neighboring nodes. Each node of the topological feature map holds a codebook vector. A best-matching-image-list. (BMIL) holds similar images that are closest to each codebook vector. In a topological feature map, there are empty nodes in which no image is classified. When we build an R*-tree, we use codebook vectors of topological feature map which eliminates the empty nodes that cause unnecessary disk access and degrade retrieval performance. We experimentally compare the retrieval time cost of a SOM-based R*-tree with that of an SOM and an R*-tree using color feature vectors extracted from 40, 000 images. The result show that the SOM-based R*-tree outperforms both the SOM and R*-tree due to the reduction of the number of nodes required to build R*-tree and retrieval time cost.

  • PDF

Dimensionality Reduction of RNA-Seq Data

  • Al-Turaiki, Isra
    • International Journal of Computer Science & Network Security
    • /
    • v.21 no.3
    • /
    • pp.31-36
    • /
    • 2021
  • RNA sequencing (RNA-Seq) is a technology that facilitates transcriptome analysis using next-generation sequencing (NSG) tools. Information on the quantity and sequences of RNA is vital to relate our genomes to functional protein expression. RNA-Seq data are characterized as being high-dimensional in that the number of variables (i.e., transcripts) far exceeds the number of observations (e.g., experiments). Given the wide range of dimensionality reduction techniques, it is not clear which is best for RNA-Seq data analysis. In this paper, we study the effect of three dimensionality reduction techniques to improve the classification of the RNA-Seq dataset. In particular, we use PCA, SVD, and SOM to obtain a reduced feature space. We built nine classification models for a cancer dataset and compared their performance. Our experimental results indicate that better classification performance is obtained with PCA and SOM. Overall, the combinations PCA+KNN, SOM+RF, and SOM+KNN produce preferred results.

Automatic Response and Conceptual Browsing of Internet FAQs Using Self-Organizing Maps (자기구성 지도를 이용한 인터넷 FAQ의 자동응답 및 개념적 브라우징)

  • Ahn, Joon-Hyun;Ryu, Jung-Won;Cho, Sung-Bae
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.12 no.5
    • /
    • pp.432-441
    • /
    • 2002
  • Though many services offer useful information on internet, computer users are not so familiar with such services that they need an assistant system to use the services easily In the case of web sites, for example, the operators answer the users e-mail questions, but the increasing number of users makes it hard to answer the questions efficiently. In this paper, we propose an assistant system which responds to the users questions automatically and helps them browse the Hanmail Net FAQ (Frequently Asked Question) conceptually. This system uses two-level self-organizing map (SOM): the keyword clustering SOM and document classification SOM. The keyword clustering SOM reduces a variable length question to a normalized vector and the document classification SOM classifies the question into an answer class. Experiments on the 2,206 e-mail question data collected for a month from the Hanmail net show that this system is able to find the correct answers with the recognition rate of 95% and also the browsing based on the map is conceptual and efficient.

Improvement of Classification Rate of Handwritten Digits by Combining Multiple Dynamic Topology-Preserving Self-Organizing Maps (다중 동적 위상보존 자기구성 지도의 결합을 통한 필기숫자 데이타의 분류율 향상)

  • Kim, Hyun-Don;Cho, Sung-Bae
    • Journal of KIISE:Software and Applications
    • /
    • v.28 no.12
    • /
    • pp.875-884
    • /
    • 2001
  • Although the self organizing map (SOM) is widely utilized in such fields of data visualization and topology preserving mapping, since it should have the topology fixed before trained, it has some shortcomings that it is difficult to apply it to practical problems, and classification capability is quite low despite better clustering performance. To overcome these points this paper proposes the dynamic topology preserving self-organizing map(DTSOM) that dynamically splits the output nodes on the map and trains them, and attempts to improve the classification capability by combining multiple DTSOMs K-Winner method has been applied to combine DTSOMs which produces K outputs with winner node selection method. This produces even better performance than the conventional combining methods such as majority voting weighting, BKS Bayesian, Borda, Condorect and reliability sum. DTSOM remedies the shortcoming of determining the topology in advance, and the classification rate increases significantly by combing multiple maps trained with different features. Experimental results with handwritten digit recognition indicate that the proposed method works out to problems of conventional SOM effectively so to improve the classification rate to 98.1%.

  • PDF

A Method of Highspeed Similarity Retrieval based on Self-Organizing Maps (자기 조직화 맵 기반 유사화상 검색의 고속화 수법)

  • Oh, Kun-Seok;Yang, Sung-Ki;Bae, Sang-Hyun;Kim, Pan-Koo
    • The KIPS Transactions:PartB
    • /
    • v.8B no.5
    • /
    • pp.515-522
    • /
    • 2001
  • Feature-based similarity retrieval become an important research issue in image database systems. The features of image data are useful to discrimination of images. In this paper, we propose the highspeed k-Nearest Neighbor search algorithm based on Self-Organizing Maps. Self-Organizing Map(SOM) provides a mapping from high dimensional feature vectors onto a two-dimensional space. A topological feature map preserves the mutual relations (similarity) in feature spaces of input data, and clusters mutually similar feature vectors in a neighboring nodes. Each node of the topological feature map holds a node vector and similar images that is closest to each node vector. We implemented about k-NN search for similar image classification as to (1) access to topological feature map, and (2) apply to pruning strategy of high speed search. We experiment on the performance of our algorithm using color feature vectors extracted from images. Promising results have been obtained in experiments.

  • PDF

Comprasion of water level patterns and trends on the Namgang junction in the Nakdong River (낙동강 남강 합류부 수위 패턴 및 추세 비교)

  • Ahn, Jung Min;Yang, Duk-Seok;Lee, Injung;Jung, Kang Young;Shin, Dongseok
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2017.05a
    • /
    • pp.249-249
    • /
    • 2017
  • 본 연구에서는 낙동강 본류의 진동과 적포교, 남강의 거룡강, 대산, 정암 수위표의 관측된 2015년부터 2016년 2년간 수위자료를 이용하여, Self-Organizing Maps(SOM)과 LOcally WEighted Scatter plot Smoother(Lowess) 기법으로 패턴과 추세를 분석하였다. SOM 분석 결과, 낙동강 본 류의 진동과 적포교, 남강의 거룡강, 대산은 동일한 패턴과 추세를 나타냈다. 수위의 범위도, SOM 분석에서 진동 최소 EL. 4.41m, 최대 EL. 5.01m 범위, 적포교 최소 EL. 4.56m, 최대 EL. 5.38m 범위, 거룡강 최소 EL. 4.53m, 최대 EL. 5.18m 범위, 대산 최소 EL. 4.57m, 최대 EL. 5.35m 범위로 큰 차이가 발생하지 않았다. 거룡강과 대산 수위 관측지점은 낙동강 본류의 배수위 영향을 받는 것을 알 수 있었으며, 두 지점의 수위 관측 목적에 따라 상류로 지점 변경이 필요 할 수도 있을 것으로 판단된다.

  • PDF

A Study on the Space Usage by the New Hanok Plan Composition - Focused on the New Hanok in Jeollanam-do Province - (신한옥의 평면구성에 따른 공간활용상태에 관한 연구 - 전라남도 신한옥을 중심으로 -)

  • Park, Jin-A;Kim, Soo-Am
    • Journal of the Korean housing association
    • /
    • v.23 no.4
    • /
    • pp.59-67
    • /
    • 2012
  • Developing the modern design of Hanok and providing support for the commercialization model development in recent years propelled by the New Hanok Support Strategies of the central government in conjunction with the New Hanok revitalization related projects reflecting local goverments. New Hanok revitalization, the rekindling and revaluing of human behaviors and interests in local goverments following the social and cultural changes of the past decades, has emeraged as an increasingly traditional area of concerning in New Hanok planning. In this paper we attempt to this discussion by describing recent projects in New Hanok revitalization in Jeollanam-do Province. Therefore, this study aims to examine the classification of compound knowledges based multidimensional relationship by using Self-Organizing Maps (SOM). SOM is an unsupervised learning neural network model for the analysis of high-dimensional input data. By using SOM, we were able to create a cluster map reflecting the characteristics of the New Hanok. In this case the pattern of the preference data was easily understood by visual analysis. Liking for compound knowledge deduced from this data was classified into 8 categories according to the compound knowledge properties of New Hanok. As a result, a systematic approach for analysis the characteristics of individual family and living environment of New Hanoks and 10 space usage patterns the changes in some aspects of New Hanok.