• 제목/요약/키워드: Self-generation Supervised Learning Algorithm

검색결과 6건 처리시간 0.022초

영상 인식을 위한 개선된 자가 생성 지도 학습 알고리듬에 관한 연구 (A Study on Enhanced Self-Generation Supervised Learning Algorithm for Image Recognition)

  • 김태경;김광백;백준기
    • 한국통신학회논문지
    • /
    • 제30권2C호
    • /
    • pp.31-40
    • /
    • 2005
  • 오류 역전파 알고리즘의 문제점과 ART 신경회로망의 문제점을 개선하기 위해 Jacobs가 제안한 delta-bar-delta 방법과 신경회로망을 결합한 자가 생성 지도 학습 알고리듬을 제안한다. 입력층과 은닉층에서는 ART-1과 ART-2 알고리듬을 이용하고, winner-take-all 방식은 완전 연결 구조이나 연결된 가중치만을 조정하도록 채택하였다. 실험을 위해 학생증, 주민등록증, 컨테이너의 영상으로 추출한 패턴을 신경회로망의 은닉층 노드에 대해 실험하였고, 실험결과 제안된 자기 생성 지도 학습알고리듬이 지역최소화, 학습 속도, 정체 현상이 기존의 방법보다 성능이 개선된 것을 확인하였다.

Self-generation을 이용한 퍼지 지도 학습 알고리즘 (Fuzzy Supervised Learning Algorithm by using Self-generation)

  • 김광백
    • 한국멀티미디어학회논문지
    • /
    • 제6권7호
    • /
    • pp.1312-1320
    • /
    • 2003
  • 본 논문에서는 하나의 은닉층을 가지는 다층 구조 신경망이 고려되었다. 다층 구조 신경망에서 널리 사용되는 오루 역전파 학습 방법은 초기 가중치와 불충분한 은닉층 노드 수로 인하여 지역 최소화에 빠질 가능성이 있다. 따라서 본 논문에서는 퍼지 단층 퍼셉트론에 ART1을 결합한 방법으로, 은닉층의 노드를 자가 생성(self-generation)하는 퍼지 지도 학습 알고리즘을 제안한다. 입력층에서 은닉층으로 노드를 생성시키는 방식은 ART1을 수정하여 사용하였고, 가중치 조정은 특정 패턴에 대한 저장 패턴을 수정하도록 하는 winner-take-all 방식을 적용하였다. 제안된 학습 방법의 성능을 평가하기 위하여 학생증 영상을 대상으로 실험한 결과. 기존의 오류 역전파 알고즘보다 연결 가중치들이 지역 최소화에 위치할 가능성이 줄었고 학습 속도 및 정체 현상이 개선되었다.

  • PDF

윤곽선 추적과 개선된 ART1 기반 자가 생성 지도 학습 알고리즘을 이용한 운송 컨테이너 영상의 식별자 인식 (The Identifier Recognition from Shipping Container Image by Using Contour Tracking and Self-Generation Supervised Learning Algorithm Based on Enhanced ART1)

  • 김광백
    • 지능정보연구
    • /
    • 제9권3호
    • /
    • pp.65-79
    • /
    • 2003
  • 운송 컨테이너의 식별자를 추출하고 인식하는 것은 컨테이너 식별자들의 크기나 위치가 정형화되어 있지 않고 외부의 잡음으로 인하여 식별자의 형태가 훼손되어 있기 때문에 어렵다. 본 논문에서는 이러한 특성을 고려하여 컨테이너 영상에 대해 Canny 마스크를 이용하여 에지를 검출하고, 검출된 에지 정보를 이용하여 수직블록과 수평블록을 추출하여 컨테이너의 식별자 영역을 추출한다. 추출된 컨테이너의 식별자 영역에서 윤곽선 추적 알고리즘을 이용하여 개별 식별자를 추출하며, 그들의 인식을 위해서는 개선된 ARTl과 지도 학습 방법을 결합한 개선된 성능의 자가 생성 지도 학습 알고리즘을 제안하여 적용한다. 제안된 방법의 성능을 확인하기 위하여 운송 컨테이너 영상들을 대상으로 실험 결과, 윤곽선 추적 알고리즘을 이용한 식별자의 추출 방법이 히스토그램을 이용한 식별자의 추출 방법보다 추출률이 개선되었고 인식 결과에서도 개선된 ART1 기반 자가 생성 지도 학습 방법이 기존의 ART1 기반 자가 생성 지도 학습 방법보다 인식률이 향상되었다.

  • PDF

ART-1 기반 퍼지 지도 학습 알고리즘 (ART1-based Fuzzy Supervised Learning Algorithm)

  • 김광백;조재현
    • 한국정보통신학회논문지
    • /
    • 제9권4호
    • /
    • pp.883-889
    • /
    • 2005
  • 다층 구조 신경망에서 널리 사용되는 오류 역전파 알고리즘은 초기 가중치와 불충분한 은닉층의 노드 수로 인하여 지역 최소화에 빠질 가능성이 있다. 따라서 본 논문에서는 오류 역전파 알고리즘에서 은닉층의 노드 수를 설정하는 문제와 ART-1에서 경계 변수의 설정에 따라 인식률이 저하되는 문제점을 개선하기 위하여 ART-1과 퍼지 단층 지도 학습 알고리즘을 결합한 ATR-1 기반 퍼지 다층 지도 학습 알고리즘을 제안 한다. 자가 생성을 이용한 제안된 퍼지 지도 학습 알고리즘은 입력층에서 은닉층으로 노드를 생성시키는 방식은 ART-1을 적용하였고, 가중치 조정은 특정 패턴에 대한 저장 패턴을 수정하도록 하는 winner-take-all 방식을 적용하였다. 제안된 학습 방법의 성능을 평가하기 위하여 주민등록증 영상을 대상으로 실험한 결과, 기존의 오류 역전파 알고즘보다 연결 가중치들이 지역 최소화에 위치할 가능성이 줄었고 학습 속도 및 정체 현상도 개선되었다.

Intelligent Hybrid Fusion Algorithm with Vision Patterns for Generation of Precise Digital Road Maps in Self-driving Vehicles

  • Jung, Juho;Park, Manbok;Cho, Kuk;Mun, Cheol;Ahn, Junho
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • 제14권10호
    • /
    • pp.3955-3971
    • /
    • 2020
  • Due to the significant increase in the use of autonomous car technology, it is essential to integrate this technology with high-precision digital map data containing more precise and accurate roadway information, as compared to existing conventional map resources, to ensure the safety of self-driving operations. While existing map technologies may assist vehicles in identifying their locations via Global Positioning System, it is however difficult to update the environmental changes of roadways in these maps. Roadway vision algorithms can be useful for building autonomous vehicles that can avoid accidents and detect real-time location changes. We incorporate a hybrid architectural design that combines unsupervised classification of vision data with supervised joint fusion classification to achieve a better noise-resistant algorithm. We identify, via a deep learning approach, an intelligent hybrid fusion algorithm for fusing multimodal vision feature data for roadway classifications and characterize its improvement in accuracy over unsupervised identifications using image processing and supervised vision classifiers. We analyzed over 93,000 vision frame data collected from a test vehicle in real roadways. The performance indicators of the proposed hybrid fusion algorithm are successfully evaluated for the generation of roadway digital maps for autonomous vehicles, with a recall of 0.94, precision of 0.96, and accuracy of 0.92.

영상 인식을 위한 제안된 자가 생성 지도 학습 알고리즘 (The Proposed Self-Generation Supervised Learning Algorithm for Image Recognition)

  • 이혜현;류재욱;조아현;김광백
    • 한국멀티미디어학회:학술대회논문집
    • /
    • 한국멀티미디어학회 2001년도 추계학술발표논문집
    • /
    • pp.226-230
    • /
    • 2001
  • 오류 역전파 알고리즘을 영상 인식에 적용한 경우 은닉층의 노드 수를 경험적으로 설정하여야 하는 문제점이 있다. 따라서 본 논문에서는 오류 역전파 알고리즘의 은닉층 노드 수를 동적으로 설정하는 문제를 해결하기 위해 ART1을 수정하여 지도 학습 방법과 결합한 자가 생성 지도 학습 알고리즘을 제안하였다. 제안된 학습 알고리즘의 성능을 평가하기 위해 콘테이너 영상의 문자 및 숫자 인식 문제에 적용하여 기존의 오류 역전파 알고리즘과 성능을 비교, 분석하였다. 실험 결과에서는 제안된 자가 생성 지도 학습알고리즘이 기존의 오류 역전과 알고리즘보다 지역 최소화에 빠질 가능성이 감소하였으며 학습 시간과 수렴성이 개선되었을 뿐만 아니라, 영상 인식에 적용할 수 있는 가능성도 제시하였다.

  • PDF