• Title/Summary/Keyword: Self-flux

Search Result 227, Processing Time 0.019 seconds

Comparative Study of Armature Reaction Field Analysis for Tubular Linear Machine with Axially Magnetized Single-sided and Double-sided Permanent Magnet Based on Analytical Field Calculations

  • Shin, Kyung-Hun;Park, Min-Gyu;Cho, Han-Wook;Choi, Jang-Young
    • Journal of Magnetics
    • /
    • v.20 no.1
    • /
    • pp.79-85
    • /
    • 2015
  • This paper presents a comparative study of a Tubular Linear Machine (TLM) with an Axially Magnetized Single-sided Permanent Magnet (AMSPM) and an Axially Magnetized Double-sided Permanent Magnet (AMDPM) based on analytical field calculations. Using a two-dimensional (2-D) polar coordinate system and a magnetic vector potential, analytical solutions for the flux density produced by the stator windings are derived. This technique is significant for the design and control implementation of electromagnetic machines. The field solution is obtained by solving Maxwell's equations in the simplified boundary value problem consisting of the air gap and coil. These analytical solutions are then used to estimate the self and mutual inductances. Two different types of machine are used to verify the validity of these model simplifications, and the analytical results are compared to results obtained using the finite element method (FEM) and experimental measurement.

Simulation, design optimization, and experimental validation of a silver SPND for neutron flux mapping in the Tehran MTR

  • Saghafi, Mahdi;Ayyoubzadeh, Seyed Mohsen;Terman, Mohammad Sadegh
    • Nuclear Engineering and Technology
    • /
    • v.52 no.12
    • /
    • pp.2852-2859
    • /
    • 2020
  • This paper deals with the simulation-based design optimization and experimental validation of the characteristics of an in-core silver Self-Powered Neutron Detector (SPND). Optimized dimensions of the SPND are determined by combining Monte Carlo simulations and analytical methods. As a first step, the Monte Carlo transport code MCNPX is used to follow the trajectory and fate of the neutrons emitted from an external source. This simulation is able to seamlessly integrate various phenomena, including neutron slowing-down and shielding effects. Then, the expected number of beta particles and their energy spectrum following a neutron capture reaction in the silver emitter are fetched from the TENDEL database using the JANIS software interface and integrated with the data from the first step to yield the origin and spectrum of the source electrons. Eventually, the MCNPX transport code is used for the Monte Carlo calculation of the ballistic current of beta particles in the various regions of the SPND. Then, the output current and the maximum insulator thickness to avoid breakdown are determined. The optimum design of the SPND is then manufactured and experimental tests are conducted. The calculated design parameters of this detector have been found in good agreement with the obtained experimental results.

A novel low resistivity copper diffusion joint for REBa2Cu3O7-δ tapes by thermocompression bonding in air

  • Wei, Ren;Zhen, Huang;Fangliang, Dong;Yue, Wu;Zhijian, Jin
    • Progress in Superconductivity and Cryogenics
    • /
    • v.24 no.4
    • /
    • pp.16-24
    • /
    • 2022
  • Applications of REBa2Cu3O7-δ tapes require joints with a simple manufacturing process, low resistance and good mechanical properties. In the present study, we successfully developed a copper diffusion joint between Cu-stabilized REBa2Cu3O7-δ tapes that meets the above requirements without solder simply by applying flux, heat and pressurization. After a 3 min thermocompression process at approximately 150 δ and 336 MPa in air, two tapes were directly connected between Cu stabilizers by copper diffusion, which was proven by microstructure analysis. The specific resistivity of the copper diffusion joint reached 5.8 nΩ·cm2 (resistance of 0.4 nΩ for a 306 mm splicing length) at 77 K in the self-field. The axial tensile stress reached 200 N without critical current degradation. The results show promise for the preparation of copper diffusion joints to be used in coils, attached tapes, and wire/cable terminals.

High Functional $GdB_2C_3O_{7-x}$ Thin Films Fabricated by Pulsed Laser Deposition

  • Song, S.H.;Ko, K.P.;Song, K.J.;Moon, S.H.;Yoo, S.I.
    • Progress in Superconductivity and Cryogenics
    • /
    • v.8 no.4
    • /
    • pp.15-18
    • /
    • 2006
  • REBCO coated conductors (RE: rare earth elements) have recently drawn great attention since they are known to possess stronger flux pinning centers in high magnetic fields compared with YBCO coated conductors. In this study, $GdBa_2Cu_3O_{7-d}(GdBCO)$ was selected to investigate the influence of the distance between target and substrate and substrate temperature on the superconducting properties of GdBCO films on the $SrTiO_3(100)$ substrate. Samples were fabricated by pulsed laser deposition (PLD) with a Nd:YAG laser (355nm). Under a given oxygen pressure of 800mTorr, we changed the distance between target and substrate from 5.5cm to 7.0cm and the substrate temperature from $750^{\circ}C\;to\;850^{\circ}C$. The crystallinity and texture of GdBCO films were analyzed by X-ray diffraction (XRD), and the surface morphology was observed by the scanning electron microscopy (SEM). Tc and Jc values were measured by the four point probe method. High quality GdBCO films with Tc of 89.7K and Jc over $1MA/cm^2$ at 77 K in self field were successfully fabricated by optimizing processing parameters. The detailed processing conditions, microstructure and superconducting properties will be presented for a discussion.

Investigations on the Pu-to-244Cm ratio method for Pu accountancy in pyroprocessing

  • Sunil S. Chirayath;Heukjin Boo;Seung Min Woo
    • Nuclear Engineering and Technology
    • /
    • v.55 no.10
    • /
    • pp.3525-3534
    • /
    • 2023
  • Non-uniformity of Pu and Cm composition in used nuclear fuel was analyzed to determine its effect on Pu accountancy in pyroprocessing, while employing the Pu-to-244Cm ratio method. Burnup simulation of a typical pressurized water reactor fuel assembly, required for the analysis, was carried out using MCNP code. Used fuel nuclide composition, as a function of nine axial and two radial meshes, were evaluated. The axial variation of neutron flux and self-shielding effects were found to affect the uniformity of Pu and Cm compositions and in turn the Pu-to-244Cm ratio. However, the results of the study showed that these non-uniformities do not affect the use of Pu-to-244Cm ratio method for Pu accountancy, if the measurement samples are drawn from the voloxidized powder at the feed step of pyroprocessing. 'Material Unaccounted For' and its uncertainty estimates are also presented for a pyrprocessing facility to verify safeguards monitoring requirements of the IAEA.

Analysis of signal cable noise currents in nuclear reactors under high neutron flux irradiation

  • Xiong Wu;Li Cai;Xiangju Zhang;Tingyu Wu;Jieqiong Jiang
    • Nuclear Engineering and Technology
    • /
    • v.55 no.12
    • /
    • pp.4628-4636
    • /
    • 2023
  • Cables are indispensable in nuclear power plants for transmitting data measured by various types of detectors, such as self-powered neutron detectors (SPNDs). These cables will generate disturbing signals that must be accurately distinguished and eliminated. Given that the cable current is not very significant, previous research has focused on SPND, with little attention paid to cable evaluation and validation. This paper specifically focuses on the quantitative analysis of cables and proposes a theoretical model to predict cable noise. In this model, the reaction characteristics between irradiated neutrons and cables were discussed thoroughly. Based on the Monte Carlo method, a comprehensive simulation approach of neutron sensitivity was introduced and long-term irradiation experiments in a heavy water reactor (HWR) were designed to verify this model. The theoretical results of this method agree quite well with the experimental measurements, proving that the model is reliable and exhibits excellent accuracy. The experimental data also show that the cable current accounts for approximately 0.2% of the total current at the initial moment, but as the detector gradually depletes, it will contribute more than 2%, making it a non-negligible proportion of the total signal current.

A Study on Activation Characteristics Generated by 9 MeV Electron Linear Accelerator for Container Security Inspection (컨테이너 보안 검색용 9 MeV 전자 선형가속기에서 발생한 방사화 특성평가에 관한 연구)

  • Lee, Chang-Ho;Kim, Jang-Oh;Lee, Yoon-Ji;Jeon, Chan-Hee;Lee, Ji-Eun;Min, Byung-In
    • Journal of the Korean Society of Radiology
    • /
    • v.14 no.5
    • /
    • pp.563-575
    • /
    • 2020
  • The purpose of this study is to evaluate the activation characteristics that occur in a linear accelerator for container security inspection. In the computer simulation design, first, the targets consisted of a tungsten (Z=74) single material target and a tungsten (Z=74) and copper (Z=29) composite target. Second, the fan beam collimator was composed of a single material of lead (Z=82) and a composite material of tungsten (Z-74) and lead (Z=82) depending on the material. Final, the concrete in the room where the linear accelerator was located contained magnetite type and impurities. In the research method, first, the optical neutron flux was calculated using the MCNP6 code as a F4 Tally for the linear accelerator and structure. Second, the photoneutron flux calculated from the MCNP6 code was applied to FISPACT-II to evaluate the activation product. Final, the decommissioning evaluation was conducted through the specific activity of the activation product. As a result, first, it was the most common in photoneutron targets, followed by a collimator and a concrete 10 cm deep. Second, activation products were produced as by-products of W-181 in tungsten targets and collimator, and Co-60, Ni-63, Cs-134, Eu-152, Eu-154 nuclides in impurity-containing concrete. Final, it was found that the tungsten target satisfies the permissible concentration for self-disposal after 90 days upon decommissioning. These results could be confirmed that the photoneutron yield and degree of activation at 9 MeV energy were insignificant. However, it is thought that W-181 generated from the tungsten target and collimator of the linear accelerator may affect the exposure when disassembled for repair. Therefore, this study presents basic data on the management of activated parts of a linear accelerator for container security inspection. In addition, When decommissioning the linear accelerator for container security inspection, it is expected that it can be used to prove the standard that permissible concentration of self-disposal.

Well-Aging: the Yeoheon Jang Hyun Kwang's meditation on the old age (웰에이징 : 노년의 삶에 대한 여헌 장현광의 성찰)

  • Kim, Kyungho
    • (The)Study of the Eastern Classic
    • /
    • no.49
    • /
    • pp.109-136
    • /
    • 2012
  • 'Old man' or 'old age' was not the parts of academic discipline in the Joseon era but Yeoheon put it in the philosophical 'problematization' of the learning of the Confucianism. He was argued that the old man or old age is not merely biological decline but it has the goal to achieve. The completion of self is the meaning and end of the life throughout the subjective realization and procedure of attaining the goal step by step. Well-aged old man is affirming the getting old and making the positive changing of old life time in his one sake. This essay is showing the Yeoheon's thought of old aging as the self-realizing well-ageing. Next, it is argued that the predicament of old age or old man is not just social welfare or biological aspects but it is serious philosophical problems. If it was just social or biological aspects then it is just a social phenomenon to approach the view of scientists. However, this is not only life and death and flux of time and relativities but also it is problematizing the self-identification subjectivities. Obviously, it is the significant that the old and or old age is fundamentally philosophical subject rather than social or biological materials. In the third chapter, we are dealing with the views of the life and death of Yeoheon. He was insisted that quite interesting opinion that is the all the lives in the universe include himself is 'a wayfarer'. It looks like a time traveler in the universe; we are just one who stays in a body for awhile. When we follow him, we are living in this universe in a time (disposable) but the same theorem is applying to the whole universe as well myriad creatures. Therefore, man has a job to do as an entity of the universe. Yeoheon was called it is the business as a job and we have to do the Dao till you end. The fourth, Yeoheon was suggested that the old man has his work and business. There are two kind of works for an old man, the former is self control as an old age that is call the old man's job and the latter is staying with the Dao that is called the old man's business. According to Yeoheon, man has charged to realize the law of the universe that means we are the moral entity; therefore we are business to complete ourselves. Old age is decline of physical activities rather than vigorous, therefore, we have to follow our body and self-affirmation of declination is the Dao. The final, Yeoheon was advised that the old man better saved in the current of the Dao, because the physical function is declining but the shining Dao is within the mind in the body. It is motivation of the self-dignity of old man and one who recognizes the work to do even in the old body that he will be the significant among all the society not a lonely old man anymore. Old aging is biological twilight but the considerable real size expertise and self-affirmation is the Dao of old age. We are meditating nowadays in Yeoheon's philosophical context on old man or old aging. By him, the old age is man of dignity as long as he realizes in his Dao through the business and self-affirmation.

Effects of heat treatment temperature on the formation of MgB2 bulk superconductors prepared using MgB4 and Mg powder

  • Kim, S.H.;Kang, W.N.;Lee, Y.J.;Jun, B.H.;Kim, C.J.
    • Progress in Superconductivity and Cryogenics
    • /
    • v.19 no.1
    • /
    • pp.42-46
    • /
    • 2017
  • The effects of the heat treatment temperature ($600^{\circ}C-1050^{\circ}C$) on the formation of $MgB_2$ and the superconducting properties have been examined. The self-synthesized $MgB_4$ and commercial Mg powders were used as raw materials for the formation of $MgB_2$. The superconducting critical temperatures ($T_cs$) of $MgB_2$ bulk superconductors prepared at $600^{\circ}C-850^{\circ}C$ were as high as 37-38 K regardless of the heat treatment temperature. However, because $MgB_4$ is more stable than $MgB_2$ at above $850^{\circ}C$, no superconducting signals were detected in the susceptibility-temperature curves of the samples prepared above $850^{\circ}C$. As for the critical current density ($J_c$), the sample heat-treated at a low temperature ($600^{\circ}C$) for a prolonged period (40 h) showed a Jc higher than those prepared at $650^{\circ}C-850^{\circ}C$ for a short period (1 h). The FWHM (full width at half maximum) result showed that the grain size of $MgB_2$ of the $600^{\circ}C$ sample was smaller than that of the other samples. The high $J_c$ of the $600^{\circ}C$sample is attributed to the presence of large numbers of grain boundaries, which can act as flux pinning centers of $MgB_2$.

ACCELERATION OF COSMIC RAYS AT LARGE SCALE COSMIC SHOCKS IN THE UNIVERSE

  • KANG HYESUNG;JONES T. W.
    • Journal of The Korean Astronomical Society
    • /
    • v.35 no.4
    • /
    • pp.159-174
    • /
    • 2002
  • Cosmological hydrodynamic simulations of large scale structure in the universe have shown that accretion shocks and merger shocks form due to flow motions associated with the gravitational collapse of nonlinear structures. Estimated speed and curvature radius of these shocks could be as large as a few 1000 km/s and several Mpc, respectively. According to the diffusive shock acceleration theory, populations of cosmic-ray particles can be injected and accelerated to very high energy by astrophysical shocks in tenuous plasmas. In order to explore the cosmic ray acceleration at the cosmic shocks, we have performed nonlinear numerical simulations of cosmic ray (CR) modified shocks with the newly developed CRASH (Cosmic Ray Amr SHock) numerical code. We adopted the Bohm diffusion model for CRs, based on the hypothesis that strong Alfven waves are self-generated by streaming CRs. The shock formation simulation includes a plasma-physics-based 'injection' model that transfers a small proportion of the thermal proton flux through the shock into low energy CRs for acceleration there. We found that, for strong accretion shocks, CRs can absorb most of shock kinetic energy and the accretion shock speed is reduced up to $20\%$, compared to pure gas dynamic shocks. For merger shocks with small Mach numbers, however, the energy transfer to CRs is only about $10-20\%$ with an associated CR particle fraction of $10^{-3}$. Nonlinear feedback due to the CR pressure is insignificant in the latter shocks. Although detailed results depend on models for the particle diffusion and injection, these calculations show that cosmic shocks in large scale structure could provide acceleration sites of extragalactic cosmic rays of the highest energy.