• Title/Summary/Keyword: Self-contained breathing apparatus

Search Result 20, Processing Time 0.026 seconds

Improving the Safety Regulation For Self Contained Breathing Apparatus (특정소방대상물의 공기호흡기 안전규제 개선방안)

  • Lee, Sang-Pal
    • Fire Science and Engineering
    • /
    • v.24 no.3
    • /
    • pp.45-51
    • /
    • 2010
  • The objective of this study to analyse the cause and pattern of failing to use in Self Contained Breathing Apparatus using by government regulation for producer and client. Regulation for producer is related to legal and institution of safety inspectiontest of SCBA. Rregulation for client is preventive maintenance. Improving fail in use of SCBA are following. First, expansion of ad hoc collection inspection and safety checking is required. Second, the strict application of the law for monitoring and auditing disposal procedure in low performance SCBA is required.

Respiratory Responses during Exercise in Self-contained Breathing Apparatus among Firefighters and Nonfirefighters

  • Hostler, David;Pendergast, David R.
    • Safety and Health at Work
    • /
    • v.9 no.4
    • /
    • pp.468-472
    • /
    • 2018
  • Background: Firefighters are required to use self-contained breathing apparatus (SCBA), which impairs ventilatory mechanics. We hypothesized that firefighters have elevated arterial $CO_2$ when using SCBA. Methods: Firefighters and controls performed a maximal exercise test on a cycle ergometer and two graded exercise tests (GXTs) at 25%, 50%, and 70% of their maximal aerobic power, once with a SCBA facemask and once with protective clothing and full SCBA. Results: Respiratory rate increased more in controls than firefighters. Heart rate increased as a function of oxygen consumption ($V_{O_2}$) more in controls than firefighters. End-tidal $CO_2$ ($ETCO_2$) during the GXTs was not affected by work rate in either group for either condition but was higher in firefighters at all work rates in both GXTs. SCBA increased $ETCO_2$ in controls but not firefighters. Conclusions: The present study showed that when compared to controls, firefighters' hypoventilate during a maximal test and GXT. The hypoventilation resulted in increased $ETCO_2$, and presumably increased arterial $CO_2$, during exertion. It is proposed that firefighters have altered $CO_2$ sensitivity due to voluntary hypoventilation during training and work. Confirmation of low $CO_2$ sensitivity and the consequence of this on performance and long-term health remain to be determined.

Compact near-eye display for firefighter's self-contained breathing apparatus

  • Ungyeon Yang
    • ETRI Journal
    • /
    • v.45 no.6
    • /
    • pp.1046-1055
    • /
    • 2023
  • We introduce a display for virtual-reality (VR) fire training. Firefighters prefer to wear and operate a real breathing apparatus while experiencing full visual immersion in a VR fire space. Thus, we used a thin head-mounted display (HMD) with a light field and folded optical system, aiming to both minimize the volume for integration in front of the face into a breathing apparatus and maintain adequate visibility, including a wide viewing angle and resolution similar to that of commercial displays. We developed the optical system testing modules and prototypes of the integrated breathing apparatus. Through iterative testing, the thickness of the output optical module in front of the eyes was reduced from 50 mm to 60 mm to less than 20 mm while maintaining a viewing angle of 103°. In addition, the resolution and image quality degradation of the light field in the display was mitigated. Hence, we obtained a display with a structure consistent with the needs of firefighters in the field. In future work, we will conduct user evaluation regarding fire scene reproducibility by combining immersive VR fire training and real firefighting equipment.

Physical Response of Human Body Wearing Self Contained Breathing Apparatus (소방용 공기호흡기 착용에 따른 신체반응)

  • Bang, Chang-Hoon
    • Fire Science and Engineering
    • /
    • v.26 no.5
    • /
    • pp.8-12
    • /
    • 2012
  • The aim of study intends to investigate physical response of human body wearing Self Contained Breathing Apparatus and to provide the base data for the safety of firefighter. The results of the study are as follows. when wearing SCBA, the mean skin temperature (7 %), heart rate (28 %), rate of perceived exertion (65.4 %), metabolic equivalents (70.7 %) were significantly higher (p<.05), respiratory rate was not statistically significant. It is concluded that wearing SCBA causes significant stress to the physical systems.

Development of Type 4 Composite Pressure Vessel by using PET Liner for Self-contained Breathing Apparatus (PET 라이너를 적용한 공기호흡기용 타입 복합재료 4 압력용기 개발)

  • Cho, Sung-Min;Lee, Seung-kuk;Cho, Min-sik;Lyu, Sung-ki
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.17 no.6
    • /
    • pp.164-169
    • /
    • 2018
  • In this study, we solved the human hazard problem of aluminum liner by applying plastic PET liner which is widely used as a material for food and beverage containers in the market. In order to reinforce dome area by using low strength / high elongation plastic liner, The aluminum boss was covered on the plastic liner surface. In order to predict the performance of the developed product, the structural analysis was carried out by applying the three - dimensional laminated solid element, and the soundness of the product was verified through the prototype performance test.

Impact of Firefighters' Protective Clothing and Equipment on Upper Body Range of Motion (소방용 방화복 및 방화 장비에 따른 상반신 관절 각도의 동작 범위 연구)

  • Kim, Seonyoung;Park, Huiju
    • Fashion & Textile Research Journal
    • /
    • v.17 no.4
    • /
    • pp.635-645
    • /
    • 2015
  • This study analyzed the range of motion of upper body in different configurations of firefighters' protective clothing and equipment. The purpose of this study was to understand the influence of firefighters' protective clothing and equipment over upper body motion in order to improve design of firefighters' protective clothing and equipment. 12 firefighters' upper body range of motion was analyzed while performing standing and walking trials in five different garment configurations including turnout ensemble, fire boots and the self-contained breathing apparatus. Analysis of upper body range of motion included spinal joints of L5S1, L4L3, T1C7, and C1Head. During standing trials, garment configurations caused a significant difference in range of motions at joints of L5S1, L4L3, T1C7, and C1Head. Analysis on the mean of range of motions at L5S1 and L4L3, showed that firefighters' waist bent forward significantly to a greater extent while they wore a self-contained breathing apparatus. A significantly increased range of motion was found for T1C7 and C1Head while carrying a self-contained breathing apparatus, which indicated an increase in the extension of the trunk and neck backward to stand upright and look squarely. A significant difference in range of motion was also found for L5S1 and L4L3 during walking trials.

Development of a Type 4 Composite Cylinder for Self-contained Breathing Apparatus (공기호흡기용 타입 4 복합재료 용기 개발)

  • Cho, Sung-min;Kim, Da-eun;Seong, Hye-jin;Ko, Young-kyu;Kim, Hong-chul;Lee, Kang-ok;Jo, Min-sik;Lyu, Sung-ki
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.18 no.12
    • /
    • pp.1-6
    • /
    • 2019
  • Aluminum liners used in cylinders are hazardous for human health. In this study, we use a plastic PA liner inside cylinders to solve this problem. Plastic PA liners are widely used in the manufacturing industry in the production of food and beverage containers. We covered the aluminum boss with a plastic liner material and wound the composite fibers over the liner material. To reinforce the dome area, we used low strength / high elongation plastic liner. To predict the performance of the developed product, we conducted structural analyses utilizing the 3D laminated solid element. We verified the soundness of the product by testing the prototype.

Musculoskeletal Model for Assessing Firefighters' Internal Forces and Occupational Musculoskeletal Disorders During Self-Contained Breathing Apparatus Carriage

  • Wang, Shitan;Wang, Yunyi
    • Safety and Health at Work
    • /
    • v.13 no.3
    • /
    • pp.315-325
    • /
    • 2022
  • Background: Firefighters are required to carry self-contained breathing apparatus (SCBA), which increases the risk of musculoskeletal disorders. This study assessed the newly recruited firefighters' internal forces and potential musculoskeletal disorders when carrying SCBA. The effects of SCBA strap lengths were also evaluated. Methods: Kinematic parameters of twelve male subjects running in a control condition with no SCBA equipped and three varying-strapped SCBAs were measured using 3D inertial motion capture. Subsequently, motion data and predicted ground reaction force were inputted for subject-specific musculoskeletal modeling to estimate joint and muscle forces. Results: The knee was exposed to the highest internal force when carrying SCBA, followed by the rectus femoris and hip, while the shoulder had the lowest force compared to the no-SCBA condition. Our model also revealed that adjusting SCBA straps length was an efficient strategy to influence the force that occurred at the lumbar spine, hip, and knee regions. Grey relation analysis indicated that the deviation of the center of mass, step length, and knee flexion-extension angle could be used as the predictor of musculoskeletal disorders. Conclusion: The finding suggested that the training of the newly recruits focuses on the coordinated movement of muscle and joints in the lower limb. The strap lengths around 98-105 cm were also recommended. The findings are expected to provide injury interventions to enhance the occupational health and safety of the newly recruited firefighters.

Quantification of Oxygen Production from Carbon Dioxide Using Potassium Superoxide for Oxygen Generating Closed-Circuit SCBA (산소 발생 폐쇄식 SCBA를 위한 이산화칼륨과 이산화탄소의 반응 정량화)

  • Yang, Won-Ho;Song, Young-Woong
    • Journal of Korean Society of Occupational and Environmental Hygiene
    • /
    • v.20 no.4
    • /
    • pp.236-240
    • /
    • 2010
  • This study demonstrates the use of a chemical containing potassium superoxide (KO2) to convert carbon dioxide (CO$_2$) in air to oxygen (O$_2$). A oxygen generating closed-circuit SCBA (self contained breathing apparatus) removes carbon dioxide by a chemical reaction with potassium dioxide that consumes the carbon dioxide and produces oxygen. Considering the disasters, there is a need to develop strategies to enable the introduction of self-contained self rescuers (SCSR). The potassium superoxide reacts with the wears breath to produce oxygen and absorb carbon dioxide. If the respiration rate of a person is 5 MET (metabolic equivalent), to say 30 L/min, at disaster such as fire, mass of potassium superoxide was evaluated as 33.3 g with yield and safety factor. Four researchers tested on a laboratory treadmill breathing through SCSRs in a closed circuit, it appears useable for 9 minutes.

Work Conditions and Practices in Norwegian Fire Departments From 1950 Until Today: A Survey on Factors Potentially Influencing Carcinogen Exposure

  • Jakobsen, Jarle;Babigumira, Ronnie;Danielsen, Marie;Grimsrud, Tom K.;Olsen, Raymond;Rosting, Cecilie;Veierod, Marit B.;Kjaerheim, Kristina
    • Safety and Health at Work
    • /
    • v.11 no.4
    • /
    • pp.509-516
    • /
    • 2020
  • Background: Meta-analyses have shown firefighters to be at an increased risk of several cancer types. Occupational carcinogen exposure may explain these increased risks. This study aims to describe Norwegian fire departments' work conditions from 1950 until today, focusing on factors relevant for potential occupational carcinogen exposure. Methods: With the help of a reference group, we developed a questionnaire on topics related to occupational exposure to carcinogens for the period 1950-2018. Selected Norwegian fire departments provided department-specific responses. Results: Sixteen departments, providing fire services for 48% of the Norwegian population as of 2019 and mainly consisting of professional firefighters, responded to our questionnaire. The introduction of synthetic firefighting foams, more regular live fire training, the introduction of chemical diving, and a higher number of diesel-driven fire service vehicles were identified as changes thought to increase exposure to occupational carcinogens. Changes thought to decrease exposure included the switch from negative to positive pressure self-contained breathing apparatuses, the use of self-contained breathing apparatuses during all phases of firefighting, the use of ventilating fans during firefighting, increased attention to flammable materials used during live fire training, increased attention to handling and cleaning of turnout gear and other equipment, and installment of exhaust removal systems in apparatus bays. Conclusion: Norwegian fire departments' work conditions have seen several changes since 1950, and this could influence firefighters' occupational carcinogen exposure. A peak of carcinogen exposure may have occurred in the 1970s and 1980s before recent changes have reduced exposure.