• Title/Summary/Keyword: Self-compacting Concrete

Search Result 225, Processing Time 0.023 seconds

Effect Analysis of Mix Designing Factors on Workability and Rheological Parameters of Self-Compacting Concrete (배합요인이 자기충전 콘크리트의 워커빌리티 및 레올로지 파라미터에 미치는 영향 분석)

  • Yoon, Seob;Han, Min-Cheol
    • Journal of the Korea Institute of Building Construction
    • /
    • v.18 no.3
    • /
    • pp.235-242
    • /
    • 2018
  • The objective of the paper is to investigate the effect of mix designing factors on the workability and rheological parameters of self compacting concrete in order to facilitate the difficulties of quality control of high sensitivity of SCC. Mix proportions of SCC were prepared with various conditions of coarse, and fine aggregate, and unit water content, and the SCC mixtures were tested on workability, rheological properties to provide basic data for quantitative evaluation. Test results indicated that the yield stress of SCC decreased with increasing the coarse aggregate volume ratio, and increased with increasing the amount of VMA. However, unit water content, fine aggregate type, and air content didn't affect the yield stress value. The plastic viscosity according to the mixing factors showed a similar tendency to the yield stress. In addition, there was no correlation between yield stress and workability (flow, T50, V-lot). However, there was closely correlation among plastic viscosity and T50 and V-lot. Especially, T50 and V-lot time decreased with decreasing plastic viscosity.

Influence of ground pumice powder on the bond behavior of reinforcement and mechanical properties of self-compacting mortars

  • Benli, Ahmet;Karatas, Mehmet;Sastim, M. Veysel
    • Computers and Concrete
    • /
    • v.20 no.3
    • /
    • pp.283-290
    • /
    • 2017
  • The aim of this study is to investigate the effect of the bond strength of self-compacting mortars (SCMS) produced from ground pumice powder (GPP) as a mineral additive. In this scope, six series of mortars including control mix were prepared that consist of 7%, 12%, 17%, 22% and 27% of ground pumice powder by weight of cement. A total of 54 specimens of $40{\times}40{\times}160mm$ were produced and cured at the age of 3, 28 and 90-day for compressive and tensile strength tests and 18 specimens of $150{\times}150{\times}150mm$ mortar were prepared and cured at 28 days for bond strength tests. Flexural tensile strength and compressive strength of $40{\times}40{\times}160mm$ specimens were measured at the curing age of 7, 28 and 90-day. Mini V-funnel flow time and mini slump flow diameter tests were also conducted to obtain rheological properties. As a result of the study, it was observed that the SCMs containing 12% of GPP has the highest bond strength as compared to control and GPP mortars. Compressive strength slightly increased up to 12% of GPP.

High temperature resistance of self-compacting lightweight mortar incorporating expanded perlite and pumice

  • Karatas, Mehmet;Balun, Bilal;Benli, Ahmet
    • Computers and Concrete
    • /
    • v.19 no.2
    • /
    • pp.121-126
    • /
    • 2017
  • This paper presents the effect of aggregate type on high temperature resistance of self-compacting mortars (SCM) produced with normal and lightweight aggregates like expanded perlite and pumice. Silica fume (SF) and fly ash (FA) were used as mineral additives. Totally 13 different mixtures were designed according to the aggregate rates. Mini slump flow, mini V-funnel and viscometer tests were carried out on the fresh mortar. On the other hand, bulk density, porosity, water absorption and high temperature tests were made on the hardened SCM. After being heated to temperatures of 300, 600 and $900^{\circ}C$, respectively, the tensile strength in bending and compressive strength of mortars determined. As a result of the experiments, the increase in the use of lightweight aggregate increased total water absorption and porosity of mortars. It is observed that, the increment in the usage of lightweight aggregate decreased tensile strength in bending and compressive strengths of mortar specimens exposed to high temperatures but the usage of up to 10% expanded perlite in mortar increased the compressive strength of specimens exposed to $300^{\circ}C$.

Properties of self-compacted concrete incorporating basalt fibers: Experimental study and Gene Expression Programming (GEP) analysis

  • Majeed, Samadar S.;Haido, James H.;Atrushi, Dawood Sulaiman;Al-Kamaki, Yaman;Dinkha, Youkhanna Zayia;Saadullah, Shireen T.;Tayeh, Bassam A.
    • Computers and Concrete
    • /
    • v.28 no.5
    • /
    • pp.451-463
    • /
    • 2021
  • Inorganic basalt fiber (BF) is a novel sort of commercial concrete fiber which is made with basalt rocks. Previous studies have not sufficiently handled the behavior of self-compacted concrete, at elevated temperature, containing basalt fiber. Present endeavor covers experimental work to examine the characteristics of this material at high temperature considering different fiber content and applied temperature. Different tests were carried out to measure the mechanical properties such as compressive strength (fc), modulus of elasticity (E), Poisson's ratio, splitting tensile strength (fsplit), flexural strength (fflex), and slant shear strength (fslant) of HSC and hybrid concrete. Gene expression programming (GEP) was employed to propose new constitutive relationships depending on experimental data. It was noticed from the testing records that there is no remarkable effect of BF on the Poisson's ratio and modulus of elasticity of self-compacted concrete. The flexural strength of basalt fiber self-compacted concrete was not sensitive to temperature in comparison to other mechanical properties of concrete. Fiber volume fraction of 0.25% was found to be the optimum to some extend according to degradation of strength. The proposed GEP models were in good matching with the experimental results.

Effect of silica fume and polyepoxide-based polymer on electrical resistivity, mechanical properties, and ultrasonic response of SCLC

  • Mazloom, Moosa;Allahabadi, Ali;Karamloo, Mohammad
    • Advances in concrete construction
    • /
    • v.5 no.6
    • /
    • pp.587-611
    • /
    • 2017
  • This study focused on the influences regarding the use of polyepoxide-based polymer and silica fume (SF) on the fresh and hardened state properties of self-compacting lightweight concrete (SCLC) along with their impacts on electrical resistance and ultrasonic pulse velocity (UPV). To do so, two series of compositions each of which consists of twelve mixes, with water to binder (W/B) ratios of 0.35 and 0.4 were cast. Three different silica fume/binder ratios of 0, 5%, and 10% were considered along with four different polymer/binder ratios of 0, 5%, 10%, and 15%. Afterwards, the rupture modulus, tensile strength, 14-day, 28-day, and 90-day compressive strength, the UPV and the electrical resistance of the mixes were tested. The results indicated that although the use of polymer could enhance the passing and filling abilities, it could lead to a decrease of segregation resistance. In addition, the interaction of the SF and the polymeric contents enhanced the workability. However, the impacts regarding the use of polymeric contents on fresh state properties of SCLC were more prevalent than those regarding the use of SF. Besides the fresh state properties, the durability and mechanical properties of the mixes were affected due to the use of polymeric and SF contents. In other words, the use of the SF and the polymer enhanced the durability and mechanical properties of SCLC specimens.

Effect of coarse aggregates and sand contents on workability and static stability of self-compacting concrete

  • Mohamed, Sahraoui;Taye, Bouziani
    • Advances in concrete construction
    • /
    • v.7 no.2
    • /
    • pp.97-105
    • /
    • 2019
  • In this paper, the workability and static stability were evaluated using a proposed test method. Workability and static stability represent a key property of self-compacting concrete (SCC) in fresh state. A number of standardized test methods were developed to assess these properties. However, no accelerated test method reliably predicts both workability and static stability of SCC. In the present work, a modified K-slump test method was developed to evaluate workability and static stability of SCC. In order to take implicit mixture variations of SCC constituents that can affect fresh SCC properties, a central composite design was adopted to highlight the effect of gravel to sand ratio (G/S), gravel 3/8 to gravel 8/15 ratio (G1/G2), water to cement ratio (W/C), marble powder to cement ratio (MP/C) and superplasticizer content (SP) on workability measured with slump and flow time (T50) tests and static stability measured with sieve stability test (Pi), segregation test index (SSI), Penetration test (Pd) and the proposed K-slump test (Km). The obtained results show that G/S ratio close to 1 and G1/G2 ratio close to 60% can be considered as optimal values to achieve a good workability while ensuring a sufficient static stability of SCC. Acceptable relationships were obtained between Slump flow, Pi, Pd and Km. Results show that the proposed K-slump test allow to assess both workability and static stability of fresh SCC mixtures.

Optimal Mix Design of High-Performance, Low-Heat Self-Compacting Concrete (고성능 저발열 자기충전 콘크리트의 최적 배합설계)

  • Kim, Young-Bong;Lee, Jun-Hae;Park, Dong-Cheon
    • Journal of the Korea Institute of Building Construction
    • /
    • v.22 no.4
    • /
    • pp.337-345
    • /
    • 2022
  • The foundation of high-rise concrete building in coastal areas generally must be installed in an integrated manner, not separately, in order to prevent defects caused by stress on the upper and lower parts of the mounting surface and to manage the process smoothly. However, when performing integrated punching, there is a concern that temperature stress cracks may occur due to hydration heat. Due to the large member size, it is difficult to make a sufficient commitment, so it is necessary to mix concrete with high self-charging properties to ensure workability. In this research, the amount of high-performance spray and admixture used was adjusted as experimental variables to satisfy this required performance. Through the analysis of the results for each blending variable, it was found that the unit quantity was 155kg/m3 and the cement ratio in the binder was 18%, and the target values of the pre-concrete properties and compressive strength were satisfied. A four-component binder(18% cement, 50% slag fine powder, 27% fly ash, 5% silica fume) was used.

Flowability and Strength Properties of Mortar and Self-Compacting Concrete Mixed with Waste Concrete Powder (폐콘크리트 분말을 혼합한 모르타르 및 자기충전 콘크리트의 유동 및 강도특성)

  • Choi, Yun-Wang;Jung, Moon-Young;Moon, Dae-Joong;Kim, Sung-Su
    • Journal of the Korea Concrete Institute
    • /
    • v.18 no.4 s.94
    • /
    • pp.517-526
    • /
    • 2006
  • In this study, in order to utilize waste concrete powder(WCP) which is occurred in manufacturing high quality recycled aggregate as an admixture for self-compacting concrete(SCC), the properties of cement paste, mortar, and concrete that were mixed two types of WCP, 928 and 1,360 $cm^2/g$ of surface area, were analyzed. As a result of experiment, we have found that WCP was a porous material with angle. When WCP was utilized as an admixture for SCC, its flowability and viscosity increased in proportion to the increase of a replacement ratio, and that a replacement ratio of WCP was proper within 15%. The compressive strength at 28 days mixed respectively with WCP2, 15 and 30%, showed about 36 and 28 MPa, and it showed a similar trend with a function suggested in CEB-FIP for the relationship of compressive strength and elastic modulus. According to the results, it is judged that WCP2 can be utilized as an mineral admixture of normal strength SCC.

Effect of pumice powder and artificial lightweight fine aggregate on self-compacting mortar

  • Etli, Serkan;Cemalgil, Selim;Onat, Onur
    • Computers and Concrete
    • /
    • v.27 no.3
    • /
    • pp.241-252
    • /
    • 2021
  • An experimental program was conducted to investigate the fresh properties, mechanical properties and durability characteristics of the self-compacting mortars (SCM) produced with pumice powder and Artificial Lightweight Fine Aggregate (aLWFA). aLWFA was produced by using fly ash. A total of 16 different mixtures were designed with a constant water-binder ratio of 0.37, in which natural sands were partially replaced with aLWFA and pumice powder at different volume fractions of 5%, 10% and 15%. The artificial lightweight aggregates used in this study were manufactured through cold bonding pelletisation of 90% of class-F fly ash and 10% of Portland cement in a tilted pan with an ambient temperature and moisture content. Flowability tests were conducted on the fresh mortar mixtures beforehand, to determine the self-compacting characteristics on the basis of EFNARC. To determine the conformity of the fresh mortar characteristics with the standards, mini-slump and mini-V-funnel tests were carried out. Hardened state tests were conducted after 7, 28 and 56 days to determine the flexural strength and axial compressive strength respectively. Durability, sorptivity, permeability and density tests were conducted at the end of 28 days of curing time. The test results showed that the pumice powder replacement improved both the fresh state and the hardened state characteristics of the mortar and the optimum mixture ratio was determined as 15%, considering other studies in the literature. In the aLWFA mixtures used, the mechanical and durability characteristics of the modified compositions were very close to the control mixture. It is concluded in this study that mixtures with pumice powder replacement eliminated the negative effects of the aLWFA in the mortars and made a positive contribution.

A Study in order to Utilize Waste Glasses Powder as Admixtures of Self-Compacting Concrete (폐유리(廢琉璃) 미분용(微粉用)을 보수용(補修用) 모르타르 및 자기충전(自己充塡)콘크리트의 혼화재료(混和材料)로 활용(活用)하기 위한 연구(硏究))

  • Choi, Yun-Wang;Jung, Jea-Gwone;Kang, Hyun-Jin
    • Resources Recycling
    • /
    • v.17 no.1
    • /
    • pp.29-37
    • /
    • 2008
  • Recently, domestically and internationally, the occurrences of Waste Glass are on the increase. Most of scrap glass are either reused of recycled. However, glass not recycled is buriedand is causing secondary environmental problem. With 5% mixture of Waste Glass, the average paste viscosity (rheology) decreased by 22.3% and 28-day compressive strength of mortar's flow and aging decreased by 1.5% and 6% respectively. Also, as Waste Glass mixture ratio of un-hardened elf-compacting concrete increased, fluidity increased and compressive strength decreased. In consideration of adequate compressive strength and fluidity that meets the 2nd class JSCE regulations; optimum mixture ratio of Waste Glass can be concluded as 20%.