• Title/Summary/Keyword: Self-compacting Concrete

Search Result 225, Processing Time 0.027 seconds

Experimental study on rheology, strength and durability properties of high strength self-compacting concrete

  • Bauchkar, Sunil D.;Chore, H.S.
    • Computers and Concrete
    • /
    • v.22 no.2
    • /
    • pp.183-196
    • /
    • 2018
  • The rheological behaviour of high strength self compacting concrete (HS-SCC) studied through an experimental investigation is presented in this paper. The effect of variation in supplementary cementitious materials (SCM) $vis-{\grave{a}}-vis$ four different types of processed crushed sand as fine aggregates is studied. Apart from the ordinary Portland cement (OPC), the SCMs such as fly ash (FA), ground granulated blast furnace slag (GGBS) ultrafine slag (UFS) and micro-silica (MS) are used in different percentages keeping the mix -paste volume and flow of concrete, constant. The combinations of rheology, strength and durability are equally important for selection of mixes in respect of high-rise building constructions. These combinations are referred to as the rheo-strength and rheo-durability which is scientifically linked to performance based rating. The findings show that the fineness of the sands and types of SCM affects the rheo-strength and rheo-durability performance of HS-SCC. The high amount of fines often seen in fine aggregates contributes to the higher yield stress. Further, the mixes with processed sand is found to offer better rheology as compared to that of mixes made using unwashed crushed sand, washed plaster sand, washed fine natural sand. The micro silica and ultra-fine slag conjunction with washed crushed sand can be a good solution for high rise construction in terms of rheo-strength and rheo-durability performance.

Axial behavior of RC columns strengthened with SCC filled square steel tubes

  • Lu, Yi-Yan;Liang, Hong-Jun;Li, Shan;Li, Na
    • Steel and Composite Structures
    • /
    • v.18 no.3
    • /
    • pp.623-639
    • /
    • 2015
  • Self-compacting Concrete (SCC) Filled Square steel Tubes (SCFST) was used to strengthen square RC columns. To establish the efficiency of this strengthening method, 17 columns were tested under axial compression loading including 3 RC columns without any strengthening (WRC), 1 RC column strengthened with concrete jacket (CRC), 13 RC columns strengthened with self-compacting concrete filled square steel tubes (SRC). The experimental results showed that the use of SCFST is interesting since the ductility and the bearing capacity of the RC columns are greatly improved. The improvement ratio is significantly affected by the nominal wall thickness of steel tubes (t), the strength grade of strengthening concrete (C), and the length-to-width ratio (L / B) of the specimens. In order to quantitatively analyze the effect of these test parameters on axial loading behavior of the SRC columns, three performance indices, enhancement ratio (ER), ductility index (DI), and confinement ratio (CR), were used. The strength of the SRC columns obtained from the experiments was then employed to verify the proposed mode referring to the relevant codes. It was found that codes DBJ13-51 could relatively predict the strength of the SRC columns accurately, and codes AIJ and BS5400 were relatively conservative.

Studying the effects of CFRP and GFRP sheets on the strengthening of self-compacting RC girders

  • Mazloom, Moosa;Mehrvand, Morteza;Pourhaji, Pardis;Savaripour, Azim
    • Structural Monitoring and Maintenance
    • /
    • v.6 no.1
    • /
    • pp.47-66
    • /
    • 2019
  • One method of retrofitting concrete structures is to use fiber reinforced polymers (FRP). In this research, the shear, torsional and flexural strengthening of self-compacting reinforced concrete (RC) girders are fulfilled with glass fiber reinforced polymer (GFRP) and carbon fiber reinforced polymer (CFRP) materials. At first, for verification, the experimental results were compared with numerical modeling results obtained from ABAQUS software version 6.10. Then the reinforcing sheets were attached to concrete girders in one and two layers. Studying numerical results obtained from ABAQUS software showed that the girders stiffness decreased with the propagations of cracks in them, and then the extra stresses were tolerated by adhesive layers and GFRP and CFRP sheets, which resulted in increasing the bearing capacity of the studied girders. In fact, shear, torsion and bending strengths of the girders increased by reinforcing girders with adding GFRP and CFRP sheets. The samples including two layers of CFRP had the maximum efficiencies that were 90, 76 and 60 percent of improvement in shear, torsion and bending strengths, respectively. It is worth noting that the bearing capacity of concrete girders with adding one layer of CFRP was slightly higher than the ones having two layers of GFRP in all circumstances; therefore, despite the lower initial cost of GFRP, using CFRP can be more economical in some conditions.

An Experimental Study on the Rheological Properties of the Combined Self-Compacting Concrete by Quality Variations (품질변동에 따른 병용계 자기충전 콘크리트의 유동특성에 관한 실험적 연구)

  • Kwon, Yeong-Ho
    • Journal of the Korea Concrete Institute
    • /
    • v.26 no.3
    • /
    • pp.277-285
    • /
    • 2014
  • The purpose of this study is to investigate experimentally the variation factors range having influence on the rheological properties of the combined self-compacting concrete according to materials quality, weighting error and site conditions. Two types cement (blast-furnace slag cement and belite cement), lime stone powder as binder and the optimum mix proportions in the preceded study are selected for this study. Also, variations for sensitivity test are as followings; (1) Concrete temperature 3 cases (2) Surface moisture of sand 5cases (3) Fineness modulus of sand 5cases (4) Specific surface of lime stone powder 3cases (5) Dosage of chemical admixture 5cases. Slump flow ($650{\pm}50mm$), 500 mm reaching time (($7{\pm}3sec$), V-type flowing time ($15{\pm}5sec$) and U-box height (min. 300 mm) are tested for sensitivity. As test results, the variations range for quality control are as followings. (1) Concrete temperature; $10{\sim}20^{\circ}C$(below $30^{\circ}C$) (2) Surface moisture of sand; $base{\pm}0.6%$ (3) Fineness modulus of sand; $2.6{\pm}0.2$ (4) Dosage of chemical admixture; $base{\pm}0.2%$ (5) Specific surface of lime stone powder $6000cm^2/g$. Compared with two types cement including based belite cement (binary type) and based slag cement (ternary type), the combined self-compacting concrete used belite cement type is most stable in the quality control because of high contents for lime stone powder and $C_2S$. It is to propose a control scheme of the combined self-compacting concrete in the actual construction work.

Study of The Combined High Flowing Self-Compacting Concrete's Cast in Place (병용계 고유동 자기충전 라이닝콘크리트의 현장 타설에 관한 연구)

  • Choi, Wook;Park, Hyun-Myo;Choi, Yun-Wang;Lee, Kwang-Myong;Kim, Gi-Beom;Yoon, Tae-Jung
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2008.04a
    • /
    • pp.977-980
    • /
    • 2008
  • Recently, the study on the application of SCC(Self-Compacting Concrete) is actively underway, in order to solve the lack of flowability and the poor compacting which is one of the chronic problems of tunnel lining concrete. The aim of this study is that to verify the validity of the application of SCLC(Self-Compacting Lining Concrete) for tunnel lining concrete and to examine the characteristic of flowing and mechanics of SCLC in term of comparing before and after casting SCLC was developed by Packing Factor mix method and casted in field mix-design according to the condition of site and the characteristic of aggregate. Before casting, the tests of the capability of flowability and durability was performed by slump flow, air void and so on. Additionally, the slump flow loss is measured to evaluated the possibility of cast-in-place. Furthermore, considering on the first time SCLC casting applied to the tunnel lining in Korea, it is provided that the careful items and the correct way for construction when applied the SCLC on site.

  • PDF

Effect of length and content of steel fibers on the flexural and impact performance of self-compacting cementitious composite panels

  • Denise-Penelope N. Kontoni;Behnaz Jahangiri;Ahmad Dalvand;Mozafar Shokri-Rad
    • Advances in concrete construction
    • /
    • v.15 no.1
    • /
    • pp.23-39
    • /
    • 2023
  • One of the important problems of concrete placing is the concrete compaction, which can affect the strength, durability and apparent quality of the hardened concrete. Therefore, vibrating operations might be accompanied by much noise and the need for training the involved workers, while inappropriate functioning can result in many problems. One of the most important methods to solve these problems is to utilize self-compacting cementitious composites instead of the normal concrete. Due to their benefits of these new materials, such as high tensile, compressive, and flexural strength, have drawn the researchers' attention to this type of cementitious composite more than ever. In this experimental investigation, six mixing designs were selected as a base to acquire the best mechanical properties. Moreover, forty-eight rectangular composite panels with dimensions of 300 mm × 400 mm and two thickness values of 30 mm and 50 mm were cast and tested to compare the flexural and impact energy absorption. Steel fibers with volume fractions of 0%, 0.5% and 1% and with lengths of 25 mm and 50 mm were imposed in order to prepare the required cement composites. In this research, the composite panels with two thicknesses of 30 mm and 50 mm, classified into 12 different groups, were cast and tested under three-point flexural bending and repeated drop weight impact test, respectively. Also, the examination and comparison of flexural energy absorption with impact energy absorption were one of the other aims of this research. The obtained results showed that the addition of fibers of longer length improved the mechanical properties of specimens. On the other hand, the findings of the flexural and impact test on the self-compacting composite panels indicated a stronger influence of the long-length fibers.

Modelling the performance of self-compacting SIFCON of cement slurries using genetic programming technique

  • Cevik, Abdulkadir;Sonebi, Mohammed
    • Computers and Concrete
    • /
    • v.5 no.5
    • /
    • pp.475-490
    • /
    • 2008
  • The paper explores the potential of applicability of Genetic programming approach (GP), adopted in this investigation, to model the combined effects of five independent variables to predict the mini-slump, the plate cohesion meter, the induced bleeding test, the J-fiber penetration value, and the compressive strength at 7 and 28 days of self-compacting slurry infiltrated fiber concrete (SIFCON). The variables investigated were the proportions of limestone powder (LSP) and sand, the dosage rates of superplasticiser (SP) and viscosity modifying agent (VMA), and water-to-binder ratio (W/B). Twenty eight mixtures were made with 10-50% LSP as replacement of cement, 0.02-0.06% VMA by mass of cement, 0.6-1.2% SP and 50-150% sand (% mass of binder) and 0.42-0.48 W/B. The proposed genetic models of the self-compacting SIFCON offer useful modelling approach regarding the mix optimisation in predicting the fluidity, the cohesion, the bleeding, the penetration, and the compressive strength.

Effect of temperature on the behavior of self-compacting concretes and their durability

  • Salhi, M.;Li, A.;Ghrici, M.;Bliard, C.
    • Advances in concrete construction
    • /
    • v.7 no.4
    • /
    • pp.277-288
    • /
    • 2019
  • The formulation of self-compacting concretes (SCC) and the study of their properties at the laboratory level were currently well mastered. The aim of this work is to characterize SCC under hot climatic conditions and their effects on the properties of fresh and hardened SCC. Particularly, the effect of the initial wet curing time on the mechanical behavior such as the compressive strength and the durability of the SCCs (acid and sulfate attack) as well as the microstructure of SCCs mixtures. In this study, we used two types of cement, Portland cement and slag cement, three water/binder (W/B) ratio (0.32, 0.38 and 0.44) and five curing modes. The obtained results shows that the compressive strength is strongly influenced by the curing methods, 7-days of curing in the water and then followed by a maturing in a hot climate was the optimal duration for the development of a better compressive strength, regardless of the type of binder and the W/B ratio.

Properties of Self Compacting Concrete Using Ground Granulated Blast Furnace Slag (고로슬래그미분말을 사용한 고유동콘크리트의 특성)

  • 김은겸;박천세;전찬기;이호석;최재진
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2002.10a
    • /
    • pp.579-584
    • /
    • 2002
  • In this research, the physical properties of self compacting concrete using ground granulated blast furnace slag as a part of cement were investigated. Concrete using ground granulated blast furnace slag was prepared with various ground granulated blast furnace slag replacement(20~80 volume %) for cement and the quantities of coarse aggregate in concrete were 50%, 55% and 60% of ratio of absolute volume of coarse aggregate. The workability, flowing characteristics, air content and compressive strength of concrete using ground granulated blast furnace slag were tested and the results were compared with those of ordinary portland cement concrete. In the experiment, we acquired satisfactory results at the point of flowing characteristics and strengths of concrete using ground granulated blast furnace slag within tile replacement ratio of 50% and the optimum quantity of coarse aggregate in concrete was found to be 50%~55% of ratio of absolute volume of coarse aggregate.

  • PDF

Mock-up Test of Exposed Concrete Wall using Self Compacting Concrete (노출 구조물 벽체에 적용하기 위한 무다짐 콘크리트 실물모형 실험)

  • 김규동;이승훈;손유신;김한준
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2002.10a
    • /
    • pp.561-566
    • /
    • 2002
  • Recently, high quality exposed concrete is needed to achieve high quality surface for outer wall of the building. In this study, to solve above characteristic of the exposed concrete we selected self compacting concrete(SCC) and compared with normal concrete. So, we developed the SCC mix design and performed the semi mock-up test. Through this result, we performed the pilot test and mock-up test to check surface of outer wall and to measure formwork pressure As a result because SCC is better than normal concrete with respect to flowability and seggregation resistance SCC is suit to a exposed concrete needed high quality surface for outer wall of the building.

  • PDF