• Title/Summary/Keyword: Self-absorption correction factor

Search Result 6, Processing Time 0.018 seconds

Dependence Evaluation of the Self-Absorption Correction Factor for p-type High Purity Germanium Detector Characteristics (p-type HPGe 검출기 특성에 따른 밀도 보정인자 의존도 평가)

  • Jang, Mee;Ji, Young-Yong;Kim, Chang-Jong;Lee, Wanno;Kang, Mun Ja
    • Journal of Nuclear Fuel Cycle and Waste Technology(JNFCWT)
    • /
    • v.13 no.4
    • /
    • pp.295-300
    • /
    • 2015
  • The precise determination of the activity for each radionuclide in environmental samples requires the self-absorption correction factor. In this research, we derived the self-absorption correction factor for three p-type high purity germanium detectors using the Monte Carlo code MCNPX. These detectors have different characteristics such as crystal diameter, height and size of the core. We compared the calculated full-energy peak efficiency with the experimental value using a standard sample with $1g/m^3$ density and verified the modeling. We simulated the dependency of the full-energy peak efficiency on the 0.3, 0.6, 0.9, 1.0, 1.2 and $1.5g/m^3$ samples and obtained the corresponding self-absorption correction factor. The self-absorption correction factors calculated for the three detectors differ by less than 1% over most of the energy range and sample densities considered. This indicates that the self-absorption correction factors are independent of the crystal characteristics of HPGe detector.

Effects of element composition in soil samples on the efficiencies of gamma energy peaks evaluated by the MCNP5 code

  • Ba, Vu Ngoc;Thien, Bui Ngoc;Loan, Truong Thi Hong
    • Nuclear Engineering and Technology
    • /
    • v.53 no.1
    • /
    • pp.337-343
    • /
    • 2021
  • In this work, self-absorption correction factor related to the variation of the composition and the density of soil samples were evaluated using the p-type HPGe detector. The validated MCNP5 simulation model of this detector was used to evaluate its Full Energy Peak Efficiency (FEPE) under the variation of the composition and the density of the analysed samples. The results indicates that FEPE calculation of low gamma ray is affected by the composition and the density of soil samples. The self-absorption correction factors for different gamma-ray energies which was fitted as a function of FEPEs via density and energy and fitting parameters as polynomial function for the logarithm neper of gamma ray energy help to calculate quickly the detection efficiency of detector. Factor Analysis for the influence of the element composition in analysed samples on the FEPE indicates the FEPE distribution changes from non-metal to metal groups when the gamma ray energy increases from 92 keV to 238 keV. At energies above 238 keV, the FEPE primarily depends only on the metal elements and is significantly affected by aluminium and silicon composition in soil samples.

A Study on the Self-absorption Correction Method of HPGe Gamma Spectrocopy Analysis System Using Check Source (Check Source를 이용한 HPGe감마핵종분석시스템의 자체흡수 보정방법 연구)

  • Jeong-Soo, Park;Hyo-Jin, Lim;Hyun-Soo, Seo;Da-bin, Jang;Myoung-Joon, Kim;Sang-Bok, Lee;Sung-Min, Ahn
    • Journal of radiological science and technology
    • /
    • v.45 no.6
    • /
    • pp.523-529
    • /
    • 2022
  • Gamma spectroscopy analysis is widely used for radioactivity analysis, and various factors are required for radioactivity calculations. Among the factors, K3 for each sample significantly influences the results. The previous methods of correcting the self-absorption effect include a computational simulation method and a method that requires making a CRM(certified reference material) identical to the sample medium. However, the above methods have limitations when used in small institutions because they require specialized program utilization skills or high manufacturing costs and large facilities. The aim of this study is to develop a method that can be easily and rapidly applied to radioactivity analysis. After filling the beaker with water, we placed the radiation source in a uniform position and used the measured value as the benchmark. Next, a correction factor was derived based on the difference in the radiation source count of the benchmark and the identically measured sample. For the radiation source, Eu-152, which emits a broad range of energy within the measurement range of gamma rays, and Cs-134 and Cs-137, which are indicator nuclides in environmental radiation analysis, were used. The sample was selected within the density range of 0.26-2.11 g/cm3, and the correction factor was derived by calculating the count difference of each sample compared to the reference value of water. This study presents a faster and more convenient method than the existing research methods for determining the self-absorption effect correction, which has become increasingly necessary.

The Effect of Applying Self-absorption and Coincidence Summation Correction when Measuring Environmental Samples (환경시료 측정 시 자체흡수 및 동시합성 보정 적용 효과)

  • Eun-Sung Jang;Byung-In Min
    • Journal of the Korean Society of Radiology
    • /
    • v.17 no.4
    • /
    • pp.531-539
    • /
    • 2023
  • Self-absorption is the most important factor affecting the accuracy of gamma spectroscopy measurements in environmental samples. In particular, it is affected by other factors such as the chemical composition of the sample, geometric shape, thickness, density, atomic number, distance between the sample and detector, energy of the emitted gamma photon, and humidity coefficient or percentage in the sample. To test the calibration method, a 450 ml CRM standard source (9 nuclide) Marinelli beaker was used. Five soil samples among environmental samples were measured by density by applying the corrected values. Therefore, it can be seen that the self-absorption value is more effective for somewhat large and low photon energy. In the case of environmental samples, it was confirmed that the overall energy peak efficiency through self-absorption of the source greatly depends on the density of the sample.

Calculation of the Correction Factors related to the Diameter and Density of the Concrete Core Samples using a Monte Carlo Simulation (몬테카를로 전산해석을 이용한 콘크리트 코어시료의 직경과 밀도에 따른 보정인자 계산)

  • Lee, Kyu-Young;Kang, Bo Sun
    • Journal of the Korean Society of Radiology
    • /
    • v.14 no.5
    • /
    • pp.503-510
    • /
    • 2020
  • Concrete is one of the most widely used materials as the shielding structures of a nuclear facilities. It is also the most generated radioactive waste in quantity while dismantling facilities. Since the concrete captures neutrons and generates various radionuclides, radiation measurement and analysis of the sample was fulfilled prior to dismantle facilities. An HPGe detector is used in general for the radiation measurement, and effective correction factors such as geometrical correction factor, self-absorption correction, and absolute detector efficiency have to be applied to the measured data to decide exact radioactivity of the sample. Correction factors are obtained by measuring data using a standard source with the same geometry and chemical states as the sample under the same measurement conditions. However, it is very difficult to prepare standard concrete sources because concrete is limited in pretreatment due to various constituent materials and high density. In addition, the concrete sample obtained by core drill is a volumetric source, which requires geometric correction for sample diameter and self absorption correction for sample density. Therefore in recent years, many researchers are working on the calculation of effective correction factors using Monte carlo simulation instead of measuring them using a standard source. In this study we calculated, using Geant4, one of the Monte carlo codes, the correction factors for the various diameter and density of the concrete core sample at the gamma ray energy emitted from the nuclides 152Eu and 60Co, which are the most generated in radioactive concrete.

Marinelli Beaker Measurement and Self Absorption Correction and Application for Various Environmental Samples in Monte Carlo Simulation (몬테카를로 시뮬레이션에서의 다양한 환경 샘플에 대한 Marinelli 비이커 측정 및 자기 흡수 보정과 적용)

  • Jang, Eun-Sung;Gim, Yang-Soo;Lee, Sun-Young
    • Journal of radiological science and technology
    • /
    • v.40 no.4
    • /
    • pp.605-611
    • /
    • 2017
  • The structure of the actual detector was computed using the code of the PENELOPE. Using the standard mixed sources (450, 1,000 ml), compare the effectiveness of each energy according to various densities and height of the PENELOPE computer simulation, and calculate the effectiveness of the various environmental specimens and apply them to various environmental specimens to determine the lower limit. The values obtained by the obtained value were obtained by applying the obtained efficiency to the actual environmental specimens and obtaining the lower limit values. The density correction factor is 1.155 g of the density correction factor of $0.4g/cm^3$ (59.54keV), 1.153 (661 keV), $1.06g/cm^3$ 1.064 (1,836.04keV), 1.03, and 1.033. It was confirmed that the radioactivity concentration of environmental samples decreased as the amount of specimen was measured increases, and the MDA value decreased as time measured increases.