• Title/Summary/Keyword: Self-Tuning

Search Result 437, Processing Time 0.027 seconds

Nonlinear self-tuning control incorporating cautious estimation

  • James, D.J.G.;Burnham, K.J.
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1996.10a
    • /
    • pp.227-230
    • /
    • 1996
  • The paper highlights the need for cautious least squares estimation when dealing with industrial applications of bilinear self-tuning control and indicates in qualitative terms the benefits of the approach over linear self-tuning control schemes. The cautious least squares algorithm is described and the use of cautious self-tuning in the context of both commissioning and implementation discussed.

  • PDF

$H_{\infty}$ Self-Tuning Control of a Flexible Link Robot with Unknown Payload (미지 부하 질량을 갖는 유연 링크 로봇의 $H_{\infty}$ 자기 동조 제어)

  • Han, Ki-Bong;Lee, Shi-Bok
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.14 no.2
    • /
    • pp.160-168
    • /
    • 1997
  • A $H_{\infty}$self-tuning control scheme for the tip position of a flexible link robot handling unknown loads is presented here. The scheme essentially comprises a recursive least-squares identification algorithm and $H_{\infty}$self-tunning controller. The $H_{\infty}$control low is designed to be robust to uncertain parameters and the self-tunning action provides adaption to unknown parameters. Through numerical study, the performance comparison of the $H_{\infty}$self-tuning controller with a constant gain $H_{\infty}$controller as well as a LQG self-tuning controller clearly shows its superior ability in handling load changes in quiescent states.nt states.

  • PDF

A Speed Control of Stepping Motor Using a Self-Tuning Regulator

  • Kim, Young-Tae;Kim, Sei-Yoon
    • Journal of the Korean Institute of Illuminating and Electrical Installation Engineers
    • /
    • v.23 no.11
    • /
    • pp.69-75
    • /
    • 2009
  • In this paper, a self-tuning regulator for a speed control of a permanent magnet type stepping motor is proposed. The self-tuning theory provides a nonlinear modeling of a stepping motor drive system and can provide the controller with information regarding the reference variation and parameter variation of the stepping motor through the on-line estimation. The proposed self-tuning regulator organize the positive feedback loop and IP(Integral-Proportional) type. Therefore, the proposed self-tuning regulator has a robust control capabilities during dynamic operation. The availability of the proposed controller is verified through experimental results.

Type-2 Fuzzy Self-Tuning PID Controller Design and Steering Angle Control for Mobile Robot Turning (이동로봇 선회를 위한 Type-2 Fuzzy Self-Tuning PID 제어기 설계 및 조향각 제어)

  • Park, Sang-Hyuk;Choi, Won-Hyuck;Jie, Min-Seok
    • Journal of Advanced Navigation Technology
    • /
    • v.20 no.3
    • /
    • pp.226-231
    • /
    • 2016
  • Researching and developing mobile robot are quite important. Autonomous driving of mobile robot is important in various working environment. For its autonomous driving, mobile robot detects obstacles and avoids them. Purpose of this thesis is to analyze kinematics model of the mobile robot and show the efficiency of type-2 fuzzy self-tuning PID controller used for controling steering angle. Type-2 fuzzy is more flexible in verbal expression than type-1 fuzzy because it has multiple values unlike previous one. To compare these two controllers, this paper conduct a simulation by using MATLAB Simulink. The result shows the capability of type-2 fuzzy self-tuning PID is effective.

Design of multivariable self tuning PID controllers (다변수 자기동조 PID 제어기의 설계)

  • 조원철;전기준
    • Journal of the Korean Institute of Telematics and Electronics S
    • /
    • v.34S no.7
    • /
    • pp.66-77
    • /
    • 1997
  • This paper presents an automatic tuning method for parameters of a multivaiable self-tuning velocity-type PID controller which adapts to changes in the system parameters with time delays and noises. The velocity-type PID control structure is determined in the process of minimizing the variance of the auxiliarly output, and self-tuning effect is achieved through the recursive least square algorithm at the parameter estimation stage and also through the Robbins-Monro algorithm at the stage of optiminzing the design parameters of the controller. The proposed PID type multivariable self-tuning method is simple andeffective compared with other esisting multivariable self-tuning methods. Computer simulation has shown that the proposed algorithm is beter than the trial-and-error method in the tracking performance.

  • PDF

Design of Self-Tuning PID Controller Using GPC Method (GPC기법을 이용한 자기동조 PID제어기 설계)

  • Yoon, K.S.;Lee, M.H.
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.13 no.5
    • /
    • pp.139-147
    • /
    • 1996
  • PID control has been widely used for real control systems. Particularly, there are many researches on control schemes of tuning PID gains. However, to the best of our knowledge, there is no result for discrete-time systems with unknown time-delay and unknown system parameters. On the other hand, Generalized predictive control has been reported as a useful self-tuning control technique for systems with unknown time-delay. So, in this study, based on minimization of a GPC criterion, we present a self-tuning PID control algorithm for unknown papameters and unknown time-delay system. A numerical simulation was presented to illustrate the effectiveness of this method.

  • PDF

Self-Tuning Control of Multivariable System (다변수 시스템의 자기동조제어)

  • Lee, D.C.
    • Journal of Power System Engineering
    • /
    • v.3 no.4
    • /
    • pp.69-78
    • /
    • 1999
  • In the single-input and single-output system, the parameter of plant is scalar polynomial, but in the multiple input and multiple output, it accompanies, being matrix polynomial, the consideration of observable controlability index or problems non-commutation in matrix polynomial as well as degree, and it is more complex to deal with. Therefore, it is thought that a full research on the single-input and single-output system is not sufficient. This paper proposes that problems of minimum variance self-tuning regulator by using numerical calculation example of multivariable system and pole assignment self-tuning regulator.

  • PDF

Self-tuning pole-shift controller for direct drive arms (직접 구동 로보트 팔에 대한 자기동조 극점이동 제어기)

  • 이상철;이종용;이상효
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1989.10a
    • /
    • pp.194-199
    • /
    • 1989
  • In this paper, using the direct drive arm for plant, the controller is developed to track the desired trajectory in high speed and precision. For the purpose of this, through extending self-tuning pole-placement algorithm, we developed self-tuning pole-shift algorithm which is fast in response and good tracking for the reference tracking change. Developed controller is applied a three-link direct drive arm with the varing payload to track the desired tracking. And, through the computer simulation, the performance of developed controller is compared with the performance of the computed torque method and the self-tuning pole placement algorith.

  • PDF

A Fuzzy Intelligent Cruise Controller using a Self-tuning Method (자기 조절 기능을 갖는 퍼지 지능 순항 제어기 개발)

  • Lee, Gu-Do;Kim, Sang-Woo
    • Proceedings of the KIEE Conference
    • /
    • 1997.07b
    • /
    • pp.499-503
    • /
    • 1997
  • In this paper, we present a fuzzy ICC using a self-tuning method. To provide robustness and adaptiveness over the vehicle nonlinearities and changes of the driving environments, an on-line self-tuning scheme based on 'Interior Penalty Function' was developed. Road test and computer simulation results verify the feasible performance of the suggested ICC algorithm.

  • PDF

Self-Tuning PID Controller Based on PLC

  • Phonphithak, A.;Pannil, P.;Suesut, T.;Masuchun, R.;Julsereewong, P.
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2004.08a
    • /
    • pp.272-276
    • /
    • 2004
  • The conventional PID (Proportional-Integral-Derivative) control technique is widely used for the process control in many industries since it is simple in structure and provides the good response. Nowadays, this control technique has been developed on the Programmable Logic Controller (PLC) to use for the process control loop. However, using this technique is difficult when tuning the PID parameters ($K_p$, $T_i$ and $T_d$) to achieve the best response. Moreover, trial-and-error procedure along with the operator experiences are required to obtain the best results when tuning the PID controller parameters. This paper proposes the self-tuning PID controller based on PLC for the process control in the industries. The proposed self-tuning PID controller uses the PLC-based PID structures to control the process production. The proposed PID tuning utilizes the PLC to synthesize and analyze controller parameter as well as to tune for appropriate parameters using Dahlin method and extrapolation. Experimental results using a self-tuning PID controller to control temperature of the oven show that the controller developed is capable of controlling the process very effectively and provides a good response.

  • PDF