• Title/Summary/Keyword: Self-Excited

Search Result 254, Processing Time 0.028 seconds

A study on the Rapid Tooling Using Metal Powder Filled Resin (금속분말 혼합수지를 이용한 쾌속 형 제작에 관한 연구)

  • Kim, Peom-Su;Bae, Won-Byung;Jeong, Hae-Do
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.16 no.6
    • /
    • pp.36-44
    • /
    • 1999
  • The rapid Tooling technique is classified into two methods: one to directly utilize the model which was made by rapid prototyping technologies for dies, and the other to make a transferred type using the model as a master model and create dies and molds using it. In this study, the Al powder filled resin was made several mixed ratios and meshes sizes, and applied to slurry casting. And, variation of mechanical characteristics such as the shrinkage rate, the tensile strength, the elongation, the hardness, and surface roughness, are measured to compare. Consequently, as higher is the powder mixed ration and as smaller is the grain size of the power, the mechanical characteristics of the final mold are improved. Finally, the metal short fiber which can be fabricated easily and cheaply, if the self-excited vibration of an elastic tool, was also applied to slurry casting. It has been found tat the hardness gets higher, while the shrinkage rate lower, if mixed with short fiber.

  • PDF

Experimental Study on the Characteristics of the Pad Fluttering in a Tilting Pad Journal Bearing (틸팅패드 저어널베어링의 패드 Fluttering 특성에 관한 실험적 연구)

  • Yang, Seong-Heon;Kim, Cha-Seil;Ha, Hyun-Chen;Yang, Seong-Heon
    • Tribology and Lubricants
    • /
    • v.18 no.5
    • /
    • pp.357-363
    • /
    • 2002
  • The vibration characteristics of the pad fluttering in a fluid film tilting pad journal bearing (4-pad LBP) have been investigated experimentally under the different values of oil supply flow rate, bearing load and shaft speed. The vibration characteristics of the pad fluttering are estimated by measuring the time signal of circumferential distribution of the film thickness and the cascade plot of the response of the relative displacement between the bearing and the shaft. It is shown that the vibration frequency of the pad fluttering has a sub-synchronous frequency and almost does not change by the increase of shaft speed. However the vibration amplitude is increased by the increase of shaft speed. From those experimental results, pad fluttering can be thought of as a self-excited vibration. The incipient pad fluttering velocity is increased by the increase of oil supply flow rate and by the decrease of bearing load. It is observed that the vibration amplitude of the pad fluttering can be decrease by the control of supply oil flow rate effectively. And also It is known that the outbreak of pad fluttering does not concern with the shaft vibration.

Design of Self Magnetization MsS Sensor Using Crossed Coils (Crossed-Coils를 이용한 자기자화 MsS센서의 설계)

  • Kim, Yi-Gon;Park, Kyung-Jo;Moon, Hong-Sik;Kim, Jae-Hyun;Ahn, Hyun-Jin;Kang, Woo-Seok;Oh, Un-Kyung
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.18 no.6
    • /
    • pp.856-862
    • /
    • 2008
  • This paper propose a advanced technique for exciting and receiving the guided torsional wave to detect flaws in pipe systems. There are some difficulties in selecting and exciting of modes by using the nickel strip attached on pipe systems, such as qualification of residual magnetic field and multi-exciting of the unwanted modes etc. In order to there difficulties we propose the new sensor, so called Crossed-coils sensor. We will prove that it is possible to select the modes to be excited and to find a optimal excitation condition for torsional mode by using the proposed sensor.

Conceptual Design of a 10 HP Homopolar Motor with Superconducting Windings

  • Park, Sang-Ho;Kim, Yun-Gil;Lee, Se-Yeon;Choi, Kyeong-Dal;Hahn, Song-Yop;Lee, Ji-Kwang
    • Progress in Superconductivity and Cryogenics
    • /
    • v.13 no.2
    • /
    • pp.9-12
    • /
    • 2011
  • Superconducting motor has a lot of benefits from high power density for ship propulsions, so a number of research project are in progress worldwide. Despite of all the benefits, there is always a difficulty of cryo-moving part for conventional air-core superconducting synchronous motors. In order to get rid of this moving cryogenic part, we propose a homopolar superconducting synchronous motor, which has high temperature superconducting armature and field coils. The rotor is supposed to be made of iron only and excited by the stationary HTS field coils. The stationary field coils make the cooling system simple and easy to realize because there is no cryo-moving part. A design result of a 10 hp homopolar synchronous motor is presented in this paper. The self and mutual inductance of the motor having the size of air gap as variable parameter are calculated by a 3-dimemsional finite element method. The value of design variables such as the dimension of a motor and the number of turns, etc. is decided by performing the coordinate transformation of the calculated inductance. The operating frequency is supposed to be below 5 Hz for low rotating speed which is needed for a purpose of ship propulsion. Low frequency also has the benefit of low AC losses.

A Study of Menstruation of Middle School Students (일 지역 여중생의 월경에 대한 조사연구)

  • Kim, Hae-Won;Kwon, Mi-Kyoung
    • Women's Health Nursing
    • /
    • v.11 no.2
    • /
    • pp.148-155
    • /
    • 2005
  • Purpose: This study was to provide preliminary data for menstrual education and research for the early adolescents. Methods: Participants were 320 middle school students in Gangreung city. Data collection was done from May 1 to May 30, 2004 by self administered questionnaires. Results: In recollecting of menarche experiences, students felt more negative (happy 18.5%, confused 72.6%, embarrassed 82.2%, angry 38.1%, proud 26.2%, excited 15.6%, surprised 54.7%). For menarche preparation, there was a low level of explanations & knowledge of menstruation, and preparedness for menarche. Key informants regarding menstruation experiences were the mother and school teacher. The mean age of menarche was 12.3years old. 66.6% had premenstrual symptoms, and the mean score of VAS for dysmennorrhea was 4.50. Significant variables related to the VAS score were embarrassed of menarche experience(F=3.38, p=.019), preparedness for menarche(F=2.86, p=.038), and premenstrual symptoms(t=63.36, p.000), Conclusion: Preparation for a positive menarche experience prior to menarche is necessary. More active menstrual education should be given for early adolescents in the school and family setting. Replication studies in other regions and developing a menstrual education program is recommended. Systematic examinations of perimenstrual discomforts for early adolescents should be followed.

  • PDF

Analysis of Friction-Induced Vibrations in a Ball Screw Driven Slide on Skewed Guideway (경사안내면 상에서 이송되는 볼나사-슬라이드 이송계의 마찰기인 진동해석)

  • Choi, Young Hyu
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.13 no.6
    • /
    • pp.88-98
    • /
    • 2014
  • A moving mass on a skewed linear guideway model to analyze the friction-induced stick-slip behavior of ball-screw-driven slides is proposed. To describe the friction force, a friction coefficient function is modelled as a third-order polynomial of the relative velocity between the slide mass and a guideway. A nonlinear differential equation of motion is derived and an approximate solution is obtained using a perturbation method for the amplitudes and base frequencies of both pure-slip and stick-slip oscillations. The results are presented with time responses, phase plots, and amplitude plots, which are compared adequately with those obtained by Runge Kutta 4th-order numerical integration, as long as the difference between the static and kinematic friction coefficients is small. However, errors in the results by the approximate solution increase and are not negligible if the difference between the friction coefficients exceeds approximately 40% of the static friction coefficient.

Introduction of Numerical Simulation Techniques for High-Frequency Combustion Instabilities (고주파 연소불안정 예측을 위한 해석기술 개발 사례)

  • Kim, Seong-Ku;Joh, Miok;Han, Sanghoon;Choi, Hwan-Seok
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2017.05a
    • /
    • pp.68-77
    • /
    • 2017
  • High-frequency combustion instability results from a feedback coupling between the unsteady heat release rate and the acoustic waves formed resonantly in the combustion chamber. It can be modeled as thermoacoustic problems with various degrees of the assumptions and simplifications. This paper presents numerical analysis of self-excited combustion instabilities in a variable-length lean-premixed combustor and designs of passive control devices such as baffle and acoustic resonators in a framework of 3-D FEM Helmholtz solver. Nonlinear behaviors such as steep-fronted shock waves and a finite amplitude limit cycle are also investigated with a compressible flow simulation technique.

  • PDF

Prevention of suspension bridge flutter using multiple tuned mass dampers

  • Ubertini, Filippo
    • Wind and Structures
    • /
    • v.13 no.3
    • /
    • pp.235-256
    • /
    • 2010
  • The aeroelastic stability of bridge decks equipped with multiple tuned mass dampers is studied. The problem is attacked in the time domain, by representing self-excited loads with the aid of aerodynamic indicial functions approximated by truncated series of exponential filters. This approach allows to reduce the aeroelastic stability analysis in the form of a direct eigenvalue problem, by introducing an additional state variable for each exponential term adopted in the approximation of indicial functions. A general probabilistic framework for the optimal robust design of multiple tuned mass dampers is proposed, in which all possible sources of uncertainties can be accounted for. For the purposes of this study, the method is also simplified in a form which requires a lower computational effort and it is then applied to a general case study in order to analyze the control effectiveness of regular and irregular multiple tuned mass dampers. A special care is devoted to mistuning effects caused by random variations of the target frequency. Regular multiple tuned mass dampers are seen to improve both control effectiveness and robustness with respect to single tuned mass dampers. However, those devices exhibit an asymmetric behavior with respect to frequency mistuning, which may weaken their feasibility for technical applications. In order to overcome this drawback, an irregular multiple tuned mass damper is conceived which is based on unequal mass distribution. The optimal design of this device is finally pursued via a full domain search, which evidences a remarkable robustness against frequency mistuning, in the sense of the simplified design approach.

Real-Time Detection of DNA Hybridization Assay by Using Evanescent Field Microscopy

  • Kim, Do-Kyun;Choi, Yong-Sung;Murakami, Yuji;Tamiya, Eiichi;Kwon, Young-Soo
    • KIEE International Transactions on Electrophysics and Applications
    • /
    • v.11C no.3
    • /
    • pp.85-90
    • /
    • 2001
  • The determination of DNA hybridization reaction can apply the molecular biology research, clinic diagnostics, bioengineering, environment monitoring, food science and other application area. So, the improvement of DNA detection system is very important for the determination of this hybridization reaction. In this study, we report the characterization of the probe and target oligonucleotide hybridization reaction using the evanescent field microscopy. First, we have fabricated DNA chip microarray. The particles which were immobilized oligonucleotides were arranged by the random fluidic self-assembly on the pattern chips, using hydrophobic interaction. Second, we have detected DNA hybridization reaction using evanescent field microscopy. The 5'-biotinylated probe oligonucleotides were immobilized on the surface of DNA chip microarray and the hybridization reaction with the Rhodamine conjugated target oligonucleotide was excited fluorescence generated on the evanescent field microscopy. In the foundation of this result, we could be employed as the basis of a probe olidonucleotide, capable of detecting the target oligonucleotide and monitoring it in a large analyte concentration range and various mismatching condition.

  • PDF

Capacitively Coupled Plasma Simulation for Low-k Materials Etching Process Using $H_2/N_2$ gas (저 유전 재료의 에칭 공정을 위한 $H_2/N_2$ 가스를 이용한 Capacitively Coupled Plasma 시뮬레이션)

  • Shon, Chae-Hwa
    • The Transactions of the Korean Institute of Electrical Engineers C
    • /
    • v.55 no.12
    • /
    • pp.601-605
    • /
    • 2006
  • The resistance-capacitance (RC) delay of signals through interconnection materials becomes a big hurdle for high speed operation of semiconductors which contain multi-layer interconnections in smaller scales with higher integration density. Low-k materials are applied to the inter-metal dielectric (IMD) materials in order to overcome the RC delay. Relaxation continuum (RCT) model that includes neutral-species transport model have developed to model the etching process in a capacitively coupled plasma (CCP) device. We present the parametric study of the modeling results of a two-frequency capacitively coupled plasma (2f-CCP) with $N_2/H_2$ gas mixture that is known as promising one for organic low-k materials etching. For the etching of low-k materials by $N_2/H_2$ plasma, N and H atoms have a big influence on the materials. Moreover the distributions of excited neutral species influence the plasma density and profile. We include the neutral transport model as well as plasma one in the calculation. The plasma and neutrals are calculated self-consistently by iterating the simulation of both species till a spatio-temporal steady state profile could be obtained.