• Title/Summary/Keyword: Self-Assembled Monolayers (SAMs)

Search Result 108, Processing Time 0.03 seconds

Comparison of the Tribological behaviors of Various Organic Molecular Films (다양한 유기분자막의 마찰특성 비교)

  • ;;;V. Tsukruk
    • Tribology and Lubricants
    • /
    • v.17 no.5
    • /
    • pp.386-390
    • /
    • 2001
  • Monolayers such as self-assembled monolayer (SAM) have received considerable attention to reduce stiction and friction in micro-devices and microelectromechanical systems (MEMS). Various organic molecular films were investigated to obtain better understanding of their tribological behaviors and adhesion property. The organic molecular films studied in this work are: epoxysilane SAMs, octadecyltricholosilane (OST), multi-layers composed of epoxysilane SAMs, poly[styrene-b-(ethylene-co-butylene)-b-styrene](SEBS) and compound of epoxy resin and poly (paraphenylene)(EP/PPP). The pull-off forces of these films were also obtained from force-distance curves measured in static mode of operation of atomic force microscope(AFM). Tribological tests were conducted with a ball-on-flat reciprocating friction tester. The OST showed the lowest pull-off force, indicating its low adhesion property. It was revealed that, the OST, EP/PPP and the multi-layer of epoxysilane SAMs, SEBS and EP/PPP exhibited good tribological properties at the lower load (0.3 N) whereas the OST showed best performance at the higher load (1.8 N).

Comparison of the tribological behaviors of various organic molecular films (다양한 유기분자막의 마찰특성 비교)

  • ;;;V. Tsukruk
    • Proceedings of the Korean Society of Tribologists and Lubrication Engineers Conference
    • /
    • 2001.06a
    • /
    • pp.49-54
    • /
    • 2001
  • Monolayers such as self-assembled monolayer (SAM) have received considerable attention to reduce stiction and friction in micro-devices and microelectromechanical systems (MEMS). Various organic molecular films were investigated to obtain better understanding of their tribological behaviors and adhesion property. The organic molecular films studied in this work are: epoxysilane SAMs, octadecyltricholosilane (OST), multi-layers composed of epoxysilane SAMs, poly〔styrene-b-(ethylene-co-butylene)-b-styrene〕(SEBS) and compound of epoxy resin and poly (paraphenylene) (EP/PPP). The pull-off forces of these films were also obtained from force-distance curves measured in static mode of operation of atomic force microscope (AFM). Tribological tests were conducted with a ball-on-flat reciprocating friction tester. The OST showed the lowest pull-off force, indicating its low adhesion property. It was revealed that, the OST, EP/PPP and the multi-layer of epoxysilane SAMs, SEBS and EP/PPP exhibited good tribological properties at the lower load (0.3 N) whereas the OST showed best performance at the higher load (1.8 N).

  • PDF

Chemical Lithography by Surface-Induced Photoreaction of Nitro Compounds

  • Han, Sang-Woo;Lee, In-Hyung;Kim, Kwan
    • ETRI Journal
    • /
    • v.26 no.1
    • /
    • pp.38-44
    • /
    • 2004
  • Searching for systems of self-assembled monolayers (SAMs) that can be used as templates for chemical lithography, we found that nitro groups on aromatic SAMs are selectively converted on Ag to amino groups by irradiation with a visible laser. 4-nitrobenzenethiol on Ag was thus converted to 4-aminobenzenethiol by irradiating it with an $Ar^+$ laser. This was evident from surface-enhanced Raman scattering (SERS) as well as from a coupling reaction forming amide bonds. The surface-induced photoreaction allowed us to prepare patterned binary monolayers on Ag that showed different chemical reactivities. Using the binary monolayers as a lithographic template, we induced site-specific chemical reactions, such as the selective growth of biominerals on either the nitro- or amine-terminated regions by adjusting the crystal-growth conditions. We also demonstrated that patterned, amine-terminated monolayers can be fabricated even on gold by using silver nanoparticles as photoreducing catalysts.

  • PDF

Synthesis of Thiol-Functionalized Ionic Liquids and Formation of Self-Assembled Monolayer on Gold Surfaces: Effects of Alkyl Group and Anion on the Surface Wettability

  • Lee, Bang-Sook;Lee, Sang-Gi
    • Bulletin of the Korean Chemical Society
    • /
    • v.25 no.10
    • /
    • pp.1531-1537
    • /
    • 2004
  • Twenty four thiol-functionalized ionic liquids based on imidazolium cation, 1-(12-mercaptododecyl)-3-alkylimidazolium salts, have been synthesized, and utilized to investigate the effects of alkyl-chain length and anion on the wettability of Au surfaces on the basis of self-assembled monolayers presenting [(CnSAMIM)X], where n = 1-6, X = Br, $BF_4$, $PF_4$ and $NTf_2$. Water wettabilities of the surfaces were measured as a water contact angle by contact angle goniometry. It was found that water wettability of the Au surfaces coated with imidazolium ions was largely dependent not only on counter anions but also on the length of alkyl chains. In the case of SAMs of N-alkylimidazolium ions having short length of N-alkyl chain (C1-$C_4$), anions played great role in determining water wettability of the surfaces.

Nano/Micro-scale friction properties of Silicon and Silicon coated with Chemical Vapor Deposited (CVD) Self-assembled monolayers

  • Yoon, Eui-Sung;R.Arvind Singh;Oh, Hyun-Jin;Han, Hung-Gu;Kong, Ho-Sung
    • KSTLE International Journal
    • /
    • v.5 no.2
    • /
    • pp.37-43
    • /
    • 2004
  • Abstract : Nano/micro-scale friction properties were investigated on Si (100) and three self-assembled monolayers (SAMs) (PFOTC, DMDM, DPDM) coated on Si-wafer by chemical vapor deposition technique. Experiments were conducted at ambient temperature(24$pm$1$circ$C) and humidity(45$pm$5%). Friction at nano-scale was measured using Atomic Force Microscopy (AFM) in the range of 0-40nN normal loads. In both Si-wafer and SAMs, friction increased linearly as a function of applied normal load. Results showed that friction was affected by the inherent adhesion in Ssi-wafer, and in the case of SAMs the physical/chemical structures had a major influence. Coefficient of friction of these test samples at the micro-scale was also energies. In order to study the effect of contact area on coefficient of friction at the micro-scale, friction was measured for Si-wafer and DPDM against Soda Lime balls (Duke Scientiffic Corporation) of different radii (0.25 mm, 0.5 mm and 1 mm) at different applied normal loads (1500, 3000 and 4800 mN). Results showed that Si-wafer had higher coefficient of friction than DPDM. Further, unlike that in the case of DPDM, friction in Si-wafer was severely influenced by its wear. SEM evidences showed that solid-solid adhesion was the wear mechanism in Si-wafer.

Nano-scale Friction Properties of SAMs with Different Chain Length and End Groups

  • R.Arvind Singh;Yoon Eui-Sung;Han, Hung-Gu;Kong, Ho-Sung
    • KSTLE International Journal
    • /
    • v.6 no.1
    • /
    • pp.13-16
    • /
    • 2005
  • Friction characteristics at nano-scale of self-assembled monolayers (SAMs) having different chain lengths and end groups were experimentally studied.51 order to understand the effect of the chain length and end group on the nano-scalefriction: (1) two different SAMs of shorter chain lengths with different end groups such as methyl and phenyl groups, and (2)four different kinds of SAMs having long chain lengths (C10) with end groups of fluorine and hydrogen were coated on siliconwafer (100) by dipping method and Chemical Vapour Deposition (CVD) technique. Their nano-scale friction was measuredusing an Atomic Force Microscopy (AFM) in the range of 0-40 nN normal loads. Measurements were conducted at the scanning speed of 2 $mu$m/s for the scan size of 1$mu$m x 1 $mu$m using a contact mode type $Si_3N_4$ tip (NPS 20) that had a nominal spring constant0.58 N/m. All experiments were conducted at anlbient temperature (24 $pm$1$circ$C) and relative humidity (45 $pm$ 5%). Results showedthat the friction force increased with applied normal load for all samples, and that the silicon wafer exhibited highest frictionwhen compared to SAMs. While friction was affected by the inherent adhesion in silicon wafer, it was influenced by the chainlength and end group in the SAMs. It was observed that the nano-friction decreased with the chain length in SAMs. In the caseof monolayers with shorter length, the one with the phenyl group exhibited higher friction owing to the presence of benBenerings that are stiffer in nature. In the case of SAMs with longer chain length, those with fluorine showed friction values relativelyhigher than those of hydrogen. The increase in friction due to the presence of fluorine group has been discussed with respect tothe siBe of the fluorine atom.

Study on Electrical Characteristic of Self-assembled Nitro Molecule Onto Au(111) Substrate by Using STM/STS (STM/STS에 의한 Au(111) 표면에 자기조립된 니트로분자의 전기적 특성 측정)

  • Lee Nam-Suk;Kwon Young-Soo
    • The Transactions of the Korean Institute of Electrical Engineers C
    • /
    • v.55 no.1
    • /
    • pp.16-19
    • /
    • 2006
  • The characteristic of negative differential resistance(NDR) is decreased current when the applied voltage is increased. The NDR is potentially very useful in molecular electronics device schemes. Here, we investigated the NDR characteristic of self-assembled 4,4'-di(ethynylphenyl)-2'-nitro-1-benzenethiolate, which has been well known as a conducting molecule. Self-assembly monolayers(SAMs) were prepared on Au(111), which had been thermally deposited onto $pre-treatment(H_2SO_4:H_2O_2=3:1)$ Si. The Au substrate was exposed to a 1 mM/1 solution of 1-dodecanethiol in ethanol for 24 hours to form a monolayer. After thorough rinsing the sample, it was exposed to a 0.1 ${\mu}M/l$ solution of 4.4'-di(ethynylphenyl)-2'-nitro-1-(thioacetyl)benzene in dimethylformamide(DMF) for 30 min and kept in the dark during immersion to avoid photo-oxidation. After the assembly, the samples were removed from the solutions, rinsed thoroughly with methanol, acetone, and $CH_2Cl_2,$ and finally blown dry with N_2. Under these conditions, we measured electrical properties of self-assembly monolayers(SAMs) using ultra high vacuum scanning tunneling microscopy(UHV-STM). The applied voltages were from -2 V to +2 V with 298 K temperature. The vacuum condition was $6{\time}10^{-8}$ Torr. As a result, we found the NDR voltage of the 4,4'-di(ethynylphenyl)-2'-nitro-1-benzenethiolate were $-1.61{\pm}0.26$ V(negative region) and $1.84{\pm}0.33$ V(positive region). respectively.

The Production of Hydrophobic Surfaces by the Adsorption of Perfluorocarboxylic Acids onto Metal Oxides (금속 산화물에 플루오르화 카르복시산을 흡착시킨 소수성 표면의 제조)

  • Ha, Ki Ryong;Lee, Myunghee;Chung, Chinkap
    • Applied Chemistry for Engineering
    • /
    • v.16 no.4
    • /
    • pp.542-548
    • /
    • 2005
  • The self-assembled monolayers (SAMs) of perfluorocarboxylic acids were fabricated on several metal oxide powders. Perfluorododecanoic acid and perfluorooctadecanoic acid were used to study the effect of chain length on SAM. Alumina, Tantalia, Titania, and Zirconia were the metal powders used. The formation of the SAMs was confirmed by DRIFT(Diffuse Reflectance Infrared Fourier Transform) spectroscopy. Since the perfluorohydrocarbons are well known for their hydrophobicity, the resulting monolayers are also expected to have high hydrophobicity. The quality of DRIFT spectra of SAMs was dependent on the powder size as well as the element of metal oxides.

Surface Charge Transfer of Self-Assembled Viologen Derivative Using Quartz Crystal Microbalance (수정진동자를 이용한 자기조립된 Viologen 유도체의 계면전하이동 특성)

  • Park, Sang-Hyun;Ryu, Kil-Yong;Lee, Dong-Yun;Kwon, Young-Soo
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2005.11a
    • /
    • pp.256-257
    • /
    • 2005
  • We fabricated self-assembled monolayers(SAMs) onto quartz crystal microbalance(QCM) using viologen, which has been widely used as electron acceptor and electron transfer mediator. The viologen derivative exist in three redox states, namely. These redox reactions are highly reversible and can be cycled many times without significant side reactions, respectively. We studied the characteristics of charge transfer using different electrolyte solutions by electrochemical quartz crystal microbalance (EQCM). From the data, the redox peak currents were nearly equal charges during redox reaction and existed to an excellent linear interrelation between the scan rates and first redox peak currents. The redox reactions of viologen were highly reversible and the EQCM has been employed to monitor the electrochemically induced adsorption of SAMs during the redox reactions.

  • PDF

Study on electrical property of self-assembled nitro molecule onto Au(111) by Using STM/STS (STM/STS에 의한 Au (111)에 자기조립된 니트로분자의 전기적 특성 측정)

  • Lee, Nam-Suk;Choi, Won-Suk;Shin, Hoon-Kyu;Chang, Jeong-Soo;Kwon, Young-Soo
    • Proceedings of the KIEE Conference
    • /
    • 2005.07c
    • /
    • pp.1844-1846
    • /
    • 2005
  • The characteristic of negative differential resistance(NDR) is decreased current when the applied voltage is increased. The NDR is potentially very useful in molecular electronics device schemes. Here, we investigated the NDR property of self-assembled 4,4- Di(ethynylphenyl)-2'-nitro-1-(thioacetyl)benzene, which has been well known as a conducting molecule. Self-assembly monolayers(SAMs) were prepared on Au(111), which had been thermally deposited onto pre-treatment$(H_2SO_4:H_2O_2=3:1)$ Si. The Au substrate was exposed to a 1mM/l solution of 1-dodecanethiol in ethanol for 24 hours to form a monolayer. After thorough rinsing the sample, it was exposed to a $0.1{\mu}M/l$ solution of 4,4-Di(ethynylphenyl)-2'-nitro-1-(thioacetyl)benzene in dimethylformamide(DMF) for 30 min and kept in the dark during immersion to avoid photo-oxidation. After the assembly, the samples were removed from the solutions, rinsed thoroughly with methanol, acetone, and $CH_2Cl_2$, and finally blown dry with $N_2$. Under these conditions, we measured electrical properties of self-assembly monolayers(SAMs) using ultra high vacuum scanning tunneling microscopy(UHV-STM). The applied voltages were from -2V to +2V with 299K temperature. The vacuum condition is $6{\times}10^{-8}$ Torr. As a result, we found the NDR voltage of the nitro-benzene is $-1.61{\pm}0.26$ V(negative region) and $1.84{\pm}0.33$ (positive region), respectively.

  • PDF