• Title/Summary/Keyword: Self-Assembled Monolayers (SAMs)

Search Result 108, Processing Time 0.036 seconds

Structural Control and Two-Dimensional Order of Organic Thiol Self-Assembled Monolayers on Au(111)

  • No, Jae-Geun
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2011.02a
    • /
    • pp.26-26
    • /
    • 2011
  • Self-assembled monolayers (SAMs) prepared by sulfur-containing organic molecules on metal surfaces have drawn much attention for more than two decades because of their technological applications in wetting, chemical and biosensors, molecular recognition, nanolithography, and molecular electronics. In this talk, we will present self-assembly mechanism and two-dimensional (2D) structures of various organic thiol SAMs on Au(111), which are mainly demonstrated by molecular-scale scanning tunneling microscopy (STM) observation. In addition, we will provide some idea how to control 2D molecular arrangements of organic SAMs. For instance, the formation and surface structure of pentafluorobenzenethiols (PFBT) self-assembled monolayers (SAMs) on Au(111) formed from various experimental conditions were examined by means of STM. Although it is well known that PFBT molecules on metal surfaces do not form ordered SAMs, we clearly revealed for the first time that adsorption of PFBT on Au(111) at $75^{\circ}C$ for 2 h yields long-range, well-ordered self-assembled monolayers having a $(2{\times}5\sqrt{13})R30^{\circ}$ superlattice. Benzenethiols (BT) SAMs on gold usually have disordered phases, however, we have clearly demonstrated that the displacement of preadsorbed cyclohexanethiol self-assembled monolayers (SAMs) on Au(111) by BT molecules can be a successful approach to obtain BT SAMs with long-range ordered domains. Our results will provide new insight into controlling the structural order of BT or PFBT SAMs, which will be very useful in precisely tailoring the interface properties of metal surfaces in electronic devices.

  • PDF

Micromachining Thin Film Using Femtosecond Laser Photo Patterning Of Organic Self-Assembled Monolayers. (유기 자기조립 단분자막의 레이저 포토 패터닝을 이용한 박막 미세 형상 가공 기술)

  • Choi Moojin;Chang Wonseok;Kim Jaegu;Cho Sunghak;Whang Kyunghyun
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.21 no.12
    • /
    • pp.160-166
    • /
    • 2004
  • Self-Assembled Monolayers(SAMs) by alkanethiol adsorption to thin metal film are widely being investigated fer applications as coating layer for anti-stiction or friction reduction and in fabrication of micro structure of molecule and bio molecule. Recently, there have been many researches on micro patterning using the advantages of very thin thickness and etching resistance of Self-Assembled Monolayers in selective etching of thin metal film. In this report, we present the several machining method to form the nanoscale structure by Mask-Less laser patterning using alknanethiolate Self-Assembled Monolayers such as thin metal film etching and heterogeneous SAMs structure formation.

Influence of Thiol Molecular Backbone Structure on the Formation and Reductive Desorption of Self-Assembled Aromatic and Alicyclic Thiol Monolayers on Au(111) Surface

  • Kang, Hungu;Noh, Jaegeun
    • Bulletin of the Korean Chemical Society
    • /
    • v.34 no.5
    • /
    • pp.1383-1387
    • /
    • 2013
  • The surface structure and electrochemical behavior of self-assembled monolayers (SAMs) prepared from benzenethiol (BT), cyclohexanethiol (CHT), and cyclopentanethiol (CPT) on Au(111) surface were examined by scanning tunneling microscopy (STM) and cyclic voltammetry (CV) to understand the influence of thiol molecular backbone structure on the formation and reductive desorption behavior of SAMs. STM imaging showed that BT and CPT SAMs on Au(111) surface formed at room temperature were mainly composed of disordered domains, whereas CHT SAMs were composed of well-ordered domains with three orientations. From these STM results, we suggest that molecule-substrate interaction is a key parameter for determining the structural order and disorder of simple aromatic and alicyclic thiol SAMs on Au(111). In addition, the reductive desorption peak potential for BT SAMs with aromatic rings was observed at a less negative potential of -566 mV compared to CHT SAMs (-779 mV) or CPT SAMs (-775 mV) with aliphatic cyclic rings. This reductive desorption behavior for BT SAMs is due to the presence of p-orbitals on the aromatic rings, which promote facile electron transfer from the Au electrode to BT as compared to CHT and CPT. We also confirmed that the reductive desorption behavior for simple alicyclic thiol SAMs such as CHT and CPT SAMs on Au electrodes was not significantly influenced by the degree of structural order.

Self-Assembled Monolayers of Dioctyl Diselenides on Au(111)

  • Choi, Jung-Seok;Lee, Yoon-Jung;Kang, Hun-Gu;Han, Jin-Wook;Noh, Jae-Geun
    • Bulletin of the Korean Chemical Society
    • /
    • v.29 no.6
    • /
    • pp.1229-1232
    • /
    • 2008
  • The surface structure, electrochemical behavior, and wetting property of self-assembled monolayers (SAMs) formed by dioctyl diselenide (DODSe) on Au(111) were investigated by scanning tunneling microscopy (STM), cyclic voltammetry (CV), and contact angle measurements. In contrast to the formation of well-ordered SAMs by octanethiol on Au(111), the SAMs formed by DODSe have a disordered phase and many unusual vacancy islands (VIs). In addition, the formation of DODSe SAMs is largely influenced by the solution concentration used. DODSe SAMs formed in 5 $\mu$ M and 50 $\mu$ M solutions have two mixed domains consisting of missing-row ordered phases and disordered phases, while DODSe SAMs formed in 1 mM and 5 mM solutions have only disordered phases with an abnormally high VI fraction of 22-24%. We also found that the wetting property and electrochemical behavior of DODSe SAMs on Au(111) are markedly influenced by the formation of ordered SAMs and the density of VIs.

Electrocatalytic Oxidation of NADH at Electrodes of Self-assembled Monolayers Modified with Dopamine (도파민으로 수식된 SAMs 전극에서 NADH의 전기촉매에 의한 산화)

  • Cha, Seong-Keuck
    • Journal of the Korean Chemical Society
    • /
    • v.48 no.2
    • /
    • pp.151-155
    • /
    • 2004
  • The self-assembled mololayers(SAMs)were prepared with cysteine(cys) and subsequently coupled with dopamine(dopa) containing quinone functionality on the gold modified electrodes. The SAMs annealed in ethanol for 6 hours gave a better shaped cyclic voltammogram which had a 0.28 V of formal potential and same redox potential in 0.1M phosphate buffer(pH=7.10). The electrodes were employed to determine concentration of HADH with the result that calibration curve exhibited an excellent correlation(${\geq}$ 0.993) for the concentrations ranging up to 5.0${\times}10^{-4}$ M.

Self-Assembled Monolayers of Alkanethiols on Clean Copper Surfaces

  • Sung, Myung M.;Kim, Yeon Su
    • Bulletin of the Korean Chemical Society
    • /
    • v.22 no.7
    • /
    • pp.748-752
    • /
    • 2001
  • Alkanethiols (CH3(CH2)n-1SH) based self-assembled monolayers (SAMs) on the clean copper surfaces have been examined for n = 4, 8, and 16. Using X-ray photoelectron spectroscopy (XPS) and contact angle analysis, it is found that alkanethiolate monolayers similar to those on gold are formed on clean copper surfaces. The monolayers are stable in air up to about 140 $^{\circ}C.$ Above 160 $^{\circ}C$ the monolayers begin to desorb through the oxidation reaction of the thiolate to sulfonate, with the alkyl chains remaining intact. Following this desorption step, the copper surface has begun to oxidize to CuO at about 180 $^{\circ}C$.

Study on Morphology Investigation and Charge-transfer Property of Self-assembled Viologen Monolayers (자기조립된 Viologen 단분자막의 표면이미지 관찰과 계면전하이동 특성 연구)

  • Park Sang-Hyun;Lee Dong-Yun;Park Jae-Chul;Kwon Young-Soo
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.19 no.3
    • /
    • pp.246-249
    • /
    • 2006
  • We fabricated self-assembled monolayers(SAMs) onto quartz crystal microbalance(QCM) using viologen, which has been widely used as electron acceptor and electron transfer mediator. We determined the time dependence on resonant frequency shift during self-assembly process and observed the morphology of self-assembled monolayers by STM and investigated the electrochemical behavior of SAMs by cyclic voltammetry. Electrochemical deposition of viologen was investigated using electrochemical quartz crystal microbalance(EQCM). The redox reactions of viologen were highly reversible and the EQCM has been employed to monitor the electrochemically induced adsorption of SAMs during the redok reactions. The total frequency change was about 9.5 Hz, and 7.1 Hz. From the data, we could know the mass change was about 10.16 ng and 7.60 ng, respectively. Finally, the EQCM has been employed to monitor the electrochemically induced adsorption of self-assembled monolayers on Au surfaces.

Structure and Electrochemical Behavior of Aromatic Thiol Self-Assembled Monolayers on Au(111)

  • Noh, Jae-geun;Park, Ha-jung;Jeong, Young-do;Kwon, Seung-wook
    • Bulletin of the Korean Chemical Society
    • /
    • v.27 no.3
    • /
    • pp.403-406
    • /
    • 2006
  • The surface structure and electrochemical behavior of self-assembled monolayers (SAMs) formed by aromatic thiols on Au(111) were investigated by scanning tunneling microscopy (STM) and cyclic voltammetry. Benzenethiol (BT) forms disordered phases on Au(111) which are composed of many bright domains, while benzyl mercaptan (BM), with a methylene unit between the aromatic group and sulfur atom, forms twodimensional ordered SAMs on Au(111). In addition, two phase-separated domains consisting of disordered and ordered phases were observed in binary SAMs formed from a 1 : 1 mixed ethanol solution of BT and BM. From STM and CV measurements, we found that the blocking efficiency of aromatic thiol SAMs coated on an Au(111) electrode for an electron transfer reaction decreases as the structural order of the SAMs increases. Molecular-scale STM and CV results obtained here will be very useful in designing functional SAMs for further applications, such as the improvement of corrosion passivation of Au(111) on an aromatic thiolmodified Au(111) surface.

Phase Transition of Octaneselenolate Self-assembled Monolayers on Au(111) Studied by Scanning Tunneling Microscopy

  • Choi, Jung-Seok;Kang, Hun-Gu;Ito, Eisuke;Hara, Masahiko;Noh, Jae-Geun
    • Bulletin of the Korean Chemical Society
    • /
    • v.32 no.8
    • /
    • pp.2623-2627
    • /
    • 2011
  • We investigated the surface structure and wetting behavior of octaneselenolate self-assembled monolayers (SAMs) on Au(111) formed in a 50 ${\mu}M$ ethanol solution according to immersion time, using scanning tunneling microscopy (STM) and an automatic contact angle (CA) goniometer. Closely-packed, well-ordered alkanethiol SAMs would form as the immersion time increased; unexpectedly, however, we observed the structural transition of octaneselenolate SAMs from a molecular row phase with a long-range order to a disordered phase with a high density of vacancy islands (VIs). Molecularly resolved STM imaging revealed that the missing-row ordered phase of the SAMs could be assigned as a $(6{\times}{\surd}3)R30^{\circ}$ superlattice containing three molecules in the rectangular unit cell. In addition, CA measurements showed that the structural order and defect density of VIs are closely related to the wetting behaviors of octaneselenolate SAMs on gold. In this study, we clearly demonstrate that interactions between the headgroups and gold surfaces play an important role in determining the physical properties and surface structure of SAMs.

Formation and Structure of Self-Assembled Monolayers of Octylthioacetates on Au(111) in Catalytic Tetrabutylammonium Cyanide Solution

  • Park, Tae-Sung;Kang, Hun-Gu;Choi, In-Chang;Chung, Hoe-Il;Ito, Eisuke;Hara, Masahiko;Noh, Jae-Geun
    • Bulletin of the Korean Chemical Society
    • /
    • v.30 no.2
    • /
    • pp.441-444
    • /
    • 2009
  • The formation and structure of self-assembled monolayers (SAMs) by the adsorption of acetyl-protected octylthioacetate (OTA) on Au(111) in a catalytic tetrabutylammonium cyanide (TBACN) solution were examined by means of scanning tunneling microscopy (STM), X-ray photoelectron spectroscopy (XPS), and cyclic voltammetry (CV). Molecular-scale STM imaging revealed that OTA molecules on Au(111) in a pure solvent form disordered SAMs, whereas they form well-ordered SAMs showing a c(4 × 2) structure in a catalytic TBACN solution. XPS and CV measurements also revealed that OTA SAMs on Au(111) formed in a TBACN solution have a stronger chemisorbed peak in the S 2p region at 162 eV and a higher blocking effect compared to OTA SAMs formed in a pure solvent. In this study, we clearly demonstrate that TBACN can be used as an effective deprotecting reagent for obtaining well-ordered SAMs of thioacetyl-protected molecules on gold.