• Title/Summary/Keyword: Self-Absorption

Search Result 268, Processing Time 0.024 seconds

Eco-friendly Self-cooling System of Porous Onggi Ceramic Plate by Evaporation of Absorbed Water

  • Katsuki, Hiroaki;Choi, Eun-Kyong;Lee, Won-Jun;Kim, Ung-Soo;Hwang, Kwang-Taek;Cho, Woo-Seok
    • Journal of the Korean Ceramic Society
    • /
    • v.55 no.2
    • /
    • pp.153-159
    • /
    • 2018
  • Porous ceramic plates were prepared from Onggi clay and bamboo charcoal powder at 1100 and $1200^{\circ}C$ and their porous properties and water absorption, and the cooling effect of porous plates, were investigated to produce eco-friendly porous ceramics for a self-cooling system that relies on the evaporation of absorbed water. Porous properties were dependent on the particle size of charcoal powder pore forming additive and the firing temperature; properties were also found to be dependent on the total pore volume, average pore size and porosity, which had values of $0.103-0.243cm^3/g$, 0.81 - 2.56 mm and 20.9 - 38.2%, respectively, at $1100^{\circ}C$ and $0.04-0.18cm^3/g$, 0.33 - 2.03 mm and 10.8 - 30.9%, respectively, at $1200^{\circ}C$. Cooling temperature difference of flowing air parallel to surface of porous ceramic plates fired with two kinds of charcoal powder at $1100^{\circ}C$ was $3.5-3.6^{\circ}C$ at $26^{\circ}C$ and 60% of relative humidity in a closed box. Cooling temperature difference was dependent on the number of porous plates and the distance between porous plates. A simple and eco-friendly cooling system using porous ceramic plates fired from Onggi clay and charcoal powder was proposed.

Assessment of Uterine Internal Temperature according to the Time of Convex Probe Injection using a Self-made Uterine Model Phantom (자체 제작한 자궁모형팬텀을 이용한 Convex probe 주사시간에 따른 자궁내부온도 평가)

  • Lee, Hyun-Kyung;Heo, Yeong-Cheol
    • Journal of the Korean Society of Radiology
    • /
    • v.13 no.6
    • /
    • pp.895-900
    • /
    • 2019
  • Ultrasound is known to be harmless to the human body and is widely used in obstetrics and gynecology to confirm the diagnosis and development status of fetus. Diagnosis Although long - term use of ultrasound may cause changes in body temperature, studies on the uterine temperature changes due to ultrasound have been lacking. The purpose of this study was to investigate the change of temperature according to ultrasonic scanning time using a self - produced uterine model phantom. Ultrasound equipment and a 4MHz convex probe were used to construct the uterine model phantom similar to the human uterus using acrylic and pig uterus, which are tissue equivalents. Three probe type thermometers were installed to measure the inside of the acrylic water tank, the uterus, and the atmospheric temperature. The temperature of the uterine phantom was ascertained by measuring the temperature of the subject for 6 hours, 361 times. In this study, the possibility of human body temperature elevation due to ultrasound could be confirmed and this study will be used as the basic data of ultrasonic heat absorption study.

A Study on the Effect of Technological Innovation on the Implementation of Smart Factory through the Environmental Factors of the Enterprise -Absorption Capacity as Moderating Variable- (기업의 환경요인을 통한 기술혁신이 Smart Factory 구축에 미치는 영향 연구 -흡수역량을 조절변수로-)

  • Jin, Sung-Ok;Seo, Young Wook
    • The Journal of the Korea Contents Association
    • /
    • v.19 no.10
    • /
    • pp.407-420
    • /
    • 2019
  • This study is an empirical study of 'the effect of Technological innovation through environmental factors of an enterprise on the implementation of a Smart Factory'. The purpose of the research is to improve the utilization and effectiveness of the Smart Factory by considering and implementing factors that will be promoted in an internal environment or focus when building. The research method was statistical analysis with SMART PLS by surveying the relevant personnel of the company that implemented the Smart Factory. The results of the study showed that internal organizational factors and self-efficacy have a positive effect on technological innovation, and technology innovation has a positive effect on the key factors of smart factory implementation. And the absorbing capacity, which is a moderating variable, has a positive effect in part on the key factors of smart factory implementation by interacting with technological innovation factors. This study can be used by companies that want to implement a smart factory, and it has the significance of laying the theoretical foundation for research on smart factory implementation through empirical analysis.

Effect of Cyclic Wetting-drying on Self-healing of Cementitious Materials Containing Superabsorbent Polymers (습윤/건조 반복 작용이 고흡수율 폴리머를 함유한 시멘트계 재료의 자기치유에 미치는 영향)

  • Hong, Geuntae;Choi, Seongcheol
    • Journal of the Korean Recycled Construction Resources Institute
    • /
    • v.8 no.1
    • /
    • pp.88-96
    • /
    • 2020
  • In this study, the effect of cyclic wetting-drying on the self-healing of cementitious materials containing superabsorbent polymers (SAPs) were experimentally evaluated. In each cycle, cracked cement paste specimens containing various SAP dosages were exposed to wet conditions for 1 h, during which the capillary water absorption tests and water flow tests were conducted, and then exposed to dry conditions for 47 h. The capillary water absorption test results showed that the sorptivity values of the specimen without SAPs, SAP 0.5%, SAP 1.0%, and SAP 1.5% specimens were decreased by approximately 22.9%, 36.8%, 42.8%, and 46.3%, respectively, after 8 cycles. In addition, the water flow test results showed that the amount of water runoff through the cracks of all cracked specimens gradually decreased over wet/dry cycles, especially the reduction ratio of the amount of water runoff increased with increasing SAP dosage. Furthermore, the swelling behavior of SAPs in cracks by in gress water was con firmed via X-ray computed tomography (CT) analysis. These results indicate that the effective crack width can be reduced as SAPs absorb water and swell, while the water absorbed in SAPs can be released to crack surfaces under dry conditions, further promoting healing product formation. This study demon strates that the in corporation of SAPs can in crease the water tightness of cracks, thereby improving the self-healing efficiency of cementitious materials.

A Study on Fabrication of La0.5Sr0.5CoO3Thin Films as an Electrode for Ferroelectric Memory by Self-patterning Technique (Self-patterning 기술을 이용한 강유전체 메모리 전극용La0.5Sr0.5CoO3박막의 제조에 관한 연구)

  • 손현수;김병호
    • Journal of the Korean Ceramic Society
    • /
    • v.40 no.2
    • /
    • pp.153-158
    • /
    • 2003
  • Self-patterning of thin films using photosensitive sol solution has advantages such as simple manufacturing process compared to photoresist/dry etching process. In this study,$La_{0.5}SR_{0.5}CoO_3$(LSCO) thin films as an electrode material for ferroelectric memories have been prepared by spin coating method using photosensitive sol solution. La-2methoxyethoxide, Sr-ethoxide, Co-2methoxyethoxide were used as starting materials. As UV exposure time to the LSCO gel thin film increased, the UV absorption peak intensity of metal${beta}$-diketonate decreased due to reduced solubility by M(metal)-O-M bond formation. Solubility difference by UV irradiation on LSCO gel thin film allows to obtain a fine patterning of thin film. The LSCO thin films annealed over$680{\circ}C$ in air showed perovskite phase and the lowest resistivity$(4{ imes}10^{-3}{Omega}cm)$ of the thin films were obtained by annealing at$740{\circ}C$.

A Study on Fabrication of Photosensitive Sr0.9Bi2.1Ta2O9 Thin Film by Sol-gel Self-patterning Technique (Sol-gel Self-patterning 기술을 이용한 광감응성 Sr0.9Bi2.1Ta2O9 박막의 제조기술에 관한 연구)

  • Yang, Ki-Ho;Park, Tae-Ho;Lim, Tae-Young;Auh, Keon-Ho;Kim, Byong-Ho
    • Journal of the Korean Ceramic Society
    • /
    • v.39 no.8
    • /
    • pp.750-757
    • /
    • 2002
  • Self-patterning of thin films using photosensitive sol solution has advantages such as simple manufacturing process compared to photoresist/dry etching process. In this study, ferroelectric $Sr_{0.9}Bi_{2.1}Ta_2O_9$ thin films have been prepared by spin coating method using photosensitive sol solution. Strontium ethoxide, tertramethylheptanedionato bismuth and tantalum ethoxide were used as starting materials. As UV exposure time to the SBT thin film increased, the UV absorption peak intensity of metal ${\beta}$-diketonate decreased due to reduced solubility by M-O-M bond formation. Solubility difference by UV irradiation on SBT thin film allows to obtain a fine patterning of thin film. Also, The ferroelectric properties of the UV irradiated SBT thin films were superior to those of the no-UV irradiated films.

Evaluation of Durability and Self-clearing in Concrete Impregnated with Photocatalyst-colloidal Silica (광촉매-분산 실리카 함침 콘크리트의 내구성 및 정화성능 평가)

  • Kim, Hyeok-Jung;Kim, Young-Kee;Kwon, Seung-Jun
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.22 no.5
    • /
    • pp.47-54
    • /
    • 2018
  • Concrete undergoes various deterioration on surface. Impregnant with silicate is usually applied to concrete surface and forms insoluble hydrates, which can provide many engineering advantages. In the work, concrete impregnated with colloidal silicate is used for durability enhancement in surface and self-clearing performance is evaluated with photocatalyst-$TiO_2$ spraying. For the work, various tests are performed both for strength evaluation and durability evaluation such as absorption ratio, drying shrinkage, chloride penetration, sulfate resistance, and freezing/ thawing action. Furthermore, removal and self-clearing performance are evaluated with Acetaldehyde decomposition and Methylene blue decolorization. Through silicate impregnation and photocatalyst spraying, the impregnated concrete can have not only durability enhance but also self-clearing performance.

A Fundamental Study on the Influence of Performance of Cementitious Composites of Inorganic Core Material for Self-Healing Capsule of Cracks (균열 자기치유를 위한 캡슐용 무기계 코어재료의 시멘트 복합체 성능에 미치는 영향에 관한 기초적 연구)

  • Choi, Yun-Wang;Oh, Sung-Rok;Choi, Byung-Keol;Kim, Cheol-Gyu
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.21 no.1
    • /
    • pp.74-82
    • /
    • 2017
  • In this study, we prepared a core material based on the inorganic materials in liquid form for applying an inorganic-based core material to a core material for the self-healing capsules as a part of the basic study to manufacture of self-healing capsule that can heal cracks of cementitious composite. Manufactured core material based on the inorganic materials were applied directly to the cement composite before its encapsulation, were evaluated the effect on performance of cementitious composite as wall as repair performance of the cracks in the cracks. The test results showed that core material based on the inorganic materials was effective to improve the compressive and adhesion strength, had an absorption, permeation water, penetration of chloride iones and freeze-thaw resistance performance. Through the results of this paper, we want to utilize the results as a basis data of the performance of the cement composite that can be obtained when applied to inorganic core materials based on self-healing capsules and future advances localized self-healing capsule technology.

Optimized design of dual steel moment resisting system equipped with cross-anchored self-centering buckling restrained chevron brace

  • Khaneghah, Mohammadreza Ahadpour;Dehcheshmaeh, Esmaeil Mohammadi;Broujerdian, Vahid;Amiri, Gholamreza Ghodrati
    • Earthquakes and Structures
    • /
    • v.23 no.2
    • /
    • pp.139-150
    • /
    • 2022
  • In most self-center braces, decreasing residual deformation is possible only by increasing pretension force, which results in lower energy dissipation capacity. On the other hand, increasing energy dissipation capacity means higher values of residual deformation. The goal of this research was to find the best design for a self-centering buckling restrained brace (SC-BRB) system by balancing self-centering capability and energy dissipation. Three, six, and nine-story structures were investigated using OpenSees software and the TCL programming language to achieve this goal. For each height, 62 different SC-BRBs were considered using different values for the pretension force of cables, the area of the buckling restrained brace (BRB) core plate, and the yield stress of the core plate. The residual deformation and dissipated energy of all the models were calculated using nonlinear analyses after cyclic loading was applied. The optimum design for each height was determined among all the models and was compared to the structure equipped with the usual BRB. The residual deformation of the framed buildings was significantly reduced, according to the findings. Also the reduction of the energy dissipation was acceptable. The optimum design of SC-BRB in 6-story building has the most reduction percent in residual deformation, it can reduce residual deformation of building 83% while causing only a 57% of reduction in dissipated energy. The greatest reduction in residual deformation versus dissipated energy reduction was for the optimum SC-BRB design of 9-story building, results indicated that it can reduce residual deformation of building 69% while causing only a 42% of reduction in dissipated energy.

An Effect of Air Traffic Controllers' Emotional Regulation to Their Job Involvement and Organizational Loyalty (항공교통관제사의 감정통제가 직무몰입과 조직충성도에 미치는 영향)

  • Kim, Sang Soo;Kim, Kee Woong;Choi, Jin Young;Lee, Myung Woo;Choi, Youn Chul
    • Journal of the Korean Society for Aviation and Aeronautics
    • /
    • v.24 no.4
    • /
    • pp.53-61
    • /
    • 2016
  • Air Traffic Controllers (ATC) are also essential to the efficiency of airports and the airline industry. With the increasing volume of traffic, managing flights is a complex and sometimes very stressful job. ATC is using radar and other technology to track planes 'en route' between airports and keep in touch with pilots. Alternatively, ATCs are liaising with the planes on approach. However, ATC's working condition is getting more stressful, as the volume of air traffic increases. Thus this paper tried to research cognitive emotional regulation, job satisfaction, and job involvement and organizational committment of ATCs under the stressful work condition, taking care of safety of a couple of hundreds passengers per plane. Using CERQ survey sheet (Cognitive Emotional Regulation Questionnaire), it was found out that positive thinking and acceptance of self-blame have a significant impact on job satisfaction, work absorption and organizational Loyalty.