• Title/Summary/Keyword: Self etching

Search Result 264, Processing Time 0.026 seconds

Bond strength of different bonding systems to the lingual surface enamel of mandibular incisors (하악 전치 설측면에 대한 다양한 접착시스템의 접착강도)

  • Turkoz, Cagri;Tuncer, Burcu Balos;Ulusoy, Mehmet Cagri;Tuncer, Cumhur
    • The korean journal of orthodontics
    • /
    • v.40 no.4
    • /
    • pp.260-266
    • /
    • 2010
  • Objective: The aim of this study was to determine whether different types of adhesive systems and enamel-protective agents will affect the tensile bond strength of lingual brackets. Methods: A total of 75 extracted mandibular incisors were randomly divided into 5 groups and lingual brackets were bonded. Group 1 specimens received Transbond XT (3M Unitek, Monrovia, CA, USA), Group 2 required the application of a fluoride-releasing resin (Ortho-coat, Pulpdent, Watertown, MA, USA) with Transbond XT, Group 3 specimens received a chlorhexidine varnish (Cervitec Plus, Ivoclar Vivadent, Schaan, Lichtenstein) with Transbond XT. In Group 4, a light-cured orthodontic adhesive (Aegis Ortho, Bosworth, Skokie, USA) was applied and in Group 5, an antimicrobial self-etching primer (Clearfil Protect Bond, Kuraray, Osaka, Japan) was used. Results: There were no significant differences in bond strength whether fluoride-releasing resin or chlorhexidine varnish were used or not. Group 5 had significantly higher bond strength and adhesive remnant index (ARI) values than other groups (p < 0.001). The application of enamel-protective products did not have an adverse affect on the bond strength of lingual brackets. Conclusions: These products might provide benefits both for the patient and the clinician, by supporting the oral hygiene during lingual orthodontic treatment. The higher ARI score may be beneficial for Clearfil Protect Bond but its excessive bond strength should be considered in clinical practice, especially where the enamel is thin.

UV-nanoimprint Patterning Without Residual Layers Using UV-blocking Metal Layer (UV 차단 금속막을 이용한 잔류층이 없는 UV 나노 임프린트 패턴 형성)

  • Moon Kanghun;Shin Subum;Park In-Sung;Lee Heon;Cha Han Sun;Ahn Jinho
    • Journal of the Microelectronics and Packaging Society
    • /
    • v.12 no.4 s.37
    • /
    • pp.275-280
    • /
    • 2005
  • We propose a new approach to greatly simplify the fabrication of conventional nanoimprint lithography (NIL) by combined nanoimprint and photolithography (CNP). We introduce a hybrid mask mold (HMM) made from UV transparent material with a UV-blocking Cr metal layer placed on top of the mold protrusions. We used a negative tone photo resist (PR) with higher selectivity to substrate the CNP process instead of the UV curable monomer and thermal plastic polymer that has been commonly used in NIL. Self-assembled monolayer (SAM) on HMM plays a reliable role for pattern transfer when the HMM is separated from the transfer layer. Hydrophilic $SiO_2$ thin film was deposited on all parts of the HMM, which improved the formation of SAM. This $SiO_2$ film made a sub-10nm formation without any pattern damage. In the CNP technique with HMM, the 'residual layer' of the PR was chemically removed by the conventional developing process. Thus, it was possible to simplify the process by eliminating the dry etching process, which was essential in the conventional NIL method.

  • PDF

THE CHANCE OF ADAPTABILITY CHANCE IN ADHESIVE SYSTEMS TO DENTIN SUBSTRTE ACCORDING TO STORAGE TIME (상아질 접착 후 저장기간에 따른 접착제의 접착력 변화)

  • Cho, Young-Gon;Ban, Il-Hwan;Yu, Mi-Kyung
    • Restorative Dentistry and Endodontics
    • /
    • v.30 no.3
    • /
    • pp.204-214
    • /
    • 2005
  • This study compared the microtensile bond strength (${\mu}$TBS) and microscopic change of two 2-step and two 1-step self-etching adhesives to dentin according to storage times in distilled water. Occlusal dentin was exposed in 48 human molars. They were divided to four groups by different adhesives: SE Bond group (Clearfil SE Bond), AdheSE group (AdheSE). Adper group (Adper Prompt L-Pop), and Xeno group (Xeno III) . Each group was stored in 37$^{\circ}C$ distilled water for 1, 15, and 30 days. Resin-bonded specimens were sectioned into beams and subjected to ${\mu}$TBS testing with a crosshead speed of 1 mm/minute. For SEM observation, one specimen was selected and sectioned in each group after each stroage time. Resin-dentin interface was observed under FE-SEM. In all storage times, mean ${\mu}$TBS of SE group was significantly higher than those of other groups (p < 0.05). There was no significant difference between mean ${\mu}$TBS of SE group and AdheSE group among all storage times, but significant difference between 1- and 30-day storage in mean y${\mu}$TBS of Adper group and Xeno group (p > 0.05). For 1-and 15-day storage, all groups showed the close adaptation between resin-dentin interfaces. For 30-day storage, resin-dentin interfaces showed wide gap in Adper group and separate pattern in Xeno III group.

Bond strength of orthodontic brackets bonded to enamel with a self-etching primer after bleaching and desensitizer application (미백과 탈감작제 도포 후 셀프 에칭 프라이머를 이용한 브라켓 접착 시 법랑질과 브라켓 간의 결합 강도)

  • Attar, Nuray;Korkmaz, Yonca;Kilical, Yasemin;Saglam-Aydinatay, Banu;Bicer, Ceren Ozge
    • The korean journal of orthodontics
    • /
    • v.40 no.5
    • /
    • pp.342-348
    • /
    • 2010
  • Objective: The aim of this study was to compare the shear bond strengths (SBS) of orthodontic brackets bonded to enamel with a self-etching primer after bleaching, desensitizer application and combined treatment. Methods: Forty-eight premolars were randomly divided into four groups, each with n = 12 premolar samples. The four groups were; Group1: 15% hydrogen-peroxide office bleaching agent (Illumin$\acute{e}$ Office-IO), Group 2: IO + BisBlock Oxalate Dentin-Desensitizer, Group 3: Bis Block Oxalate Dentin-Desensitizer, Group 4: No treatment (control). Twenty-four hours after bonding, the specimens were tested in SBS at a crosshead speed of 5 mm/min until the brackets debonded. The failure mode of the brackets was determined by a modified adhesive remnant index. Results: Bleaching, bleaching and desensitizer treatment, and desensitizer treatment alone all significantly reduced SBS of the orthodontic brackets ($p$ = 0.001). No statistically significant difference was found between Group 1, Group 2 and Group 3 (Group 1-Group 2, $p$ = 0.564; Group 1-Group 3, $p$ = 0.371; Group 2-Group 3, $p$ = 0.133). The predominant mode of failure for the treatment groups (Group1, Group 2 and Group 3) was at the enamel-adhesive interface leaving 100% of the adhesive on the bracket base. Conclusions: Bleaching and desensitizer treatment should be delayed until the completion of orthodontic treatment.

PHYSICAL PROPERTIES OF DIFFERENT SELF-ADHESIVE RESIN CEMENTS AND THEIR SHEAR BOND STRENGTH ON LITHIUM DISILICATE CERAMIC AND DENTIN (수종의 자가 접착 레진 시멘트의 물성 및 lithium disilicate ceramic과 상아질에 대한 전단결합강도 비교)

  • Shin, Hye-Jin;Song, Chang-Kyu;Partk, Se-Hee;Kim, Jin-Woo;Cho, Kyung-Mo
    • Restorative Dentistry and Endodontics
    • /
    • v.34 no.3
    • /
    • pp.184-191
    • /
    • 2009
  • The purpose of this study was to evaluate the physical properties of different self-adhesive resin cements and their shear bond strength on dentin and lithium disilicate ceramic and compare these result with that of conventional resin cement. For this study, four self-adhesive resin cements (Rely-X Unicem, Embrace Wetbond, Mexcem, BisCem), one conventional resin cement (Rely-X ARC) and one restorative resin composite (Z-350) were used. In order to evaluate the physical properties, compressive strength, diametral tensile strength and flexural strength were measured. To evaluate the shear bond strength on dentin, each cement was adhered to buccal dentinal surface of extracted human lower molars. Dentin bonding agent was applied after acid etching for groups of Rely-X ARC and Z-350. In order to evaluate the shear bond strength on ceramic, lithium disilicate glass ceramic (IPS Empress 2) disks were prepared. Only Rely-X ARC and Z-350 groups were pretreated with hydrofluoric acid and silane. And then each resin cement was adhered to ceramic surface in 2 mm diameter. Physical properties and shear bond strengths were measured using a universal testing machine. Results were as follows 1. BisCem showed the lowest compressive strength, diametral tensile strength and flexural strength. (P<0.05) 2. Self-adhesive resin cements showed significantly lower shear bond strength on the dentin and lithium disilicate ceramic than Rely-X ARC and Z-350 (P<0.05) In conclusion, self-adhesive resin cements represent the lower physical properties and shear bond strength than a conventional resin cement.

Comparison of adhesive strength of resinous teeth splinting materials according to enamel surface treatment (법랑질 표면 처리방법에 따른 레진계 치아 고정재료의 접착강도 비교)

  • Lee, Ye-Rim;Kim, Soo-Yeon;Kim, Jin-Woo;Park, Se-Hee;Cho, Kyung-Mo
    • Journal of Dental Rehabilitation and Applied Science
    • /
    • v.35 no.2
    • /
    • pp.72-80
    • /
    • 2019
  • Purpose: The purpose of this study is to compare and analyze the shear bond strength and fracture pattern in different enamel tooth surface treatments for resin splinting materials. Materials and Methods: G-FIX and LightFix were used as tooth splinting materials. Twenty bovine mandibular incisors were used for the preparation of the specimens. The exposed enamel surface was separated into four parts. Each tooth was treated with 37% phosphoric acid, 37% phosphoric acid + adhesive resin, 37% phosphoric acid + G-premio bond, and G-premio bond for each fraction. Shear bond strength was measured using a universal testing machine. After measuring the shear bond strength, the fractured surface of the specimen was magnified with a microscope to observe the fracture pattern. Two-way ANOVA was used to verify the interaction between the material and the surface treatment method. One-way ANOVA was used for comparison between the surface treatment methods of each material and post-hoc test was conducted with Scheffe's test. An independent t-test was conducted to compare shear bond strengths between materials in each surface treatment method. All statistics were conducted at 95% significance level. Results: G-FIX, a tooth splinting resin, showed similar shear bonding strength when additional adhesive resins were used when material was applied after only acid etching, and LightFix showed the highest shear bonding strength when additional adhesive resins were used after the acid etching. In addition, both G-FIX and LightFix showed the lowest shear bond strength when only self-etching adhesive was applied without additional acid etching. Verification of interactions observed interconnection between resins and surface treatment methods. Most of the mixed failure was observed in all counties. Conclusion: When using G-FIX and LightFix, which are tooth-splinting materials, it is considered that sufficient adhesion will be achieved even after applying only acid etching as instructed by the manufacturer.

Magnetoresistance of Bi Nanowires Grown by On-Film Formation of Nanowires for In-situ Self-assembled Interconnection

  • Ham, Jin-Hee;Kang, Joo-Hoon;Noh, Jin-Seo;Lee, Woo-Young
    • Proceedings of the Korean Magnestics Society Conference
    • /
    • 2010.06a
    • /
    • pp.79-79
    • /
    • 2010
  • Semimetallic bismuth (Bi) has been extensively investigated over the last decade since it exhibits very intriguing transport properties due to their highly anisotropic Fermi surface, low carrier concentration, long carrier mean free path l, and small effective carrier mass $m^*$. In particular, the great interest in Bi nanowires lies in the development of nanowire fabrication methods and the opportunity for exploring novel low-dimensional phenomena as well as practical application such as thermoelectricity[1]. In this work, we introduce a self-assembled interconnection of nanostructures produced by an on-film formation of nanowires (OFF-ON) method in order to form a highly ohmic Bi nanobridge. A Bi thin film was first deposited on a thermally oxidized Si (100) substrate at a rate of $40\;{\AA}/s$ by radio frequency (RF) sputtering at 300 K. The sputter system was kept in an ultra high vacuum (UHV) of $10^{-6}$ Torr before deposition, and sputtering was performed under an Ar gas pressure of 2m Torr for 180s. For the lateral growth of Bi nanowires, we sputtered a thin Cr (or $SiO_2$) layer on top of the Bi film. The Bi thin films were subsequently put into a custom-made vacuum furnace for thermal annealing to grow Bi nanowires by the OFF-ON method. After thermal annealing, the Bi nanowires cannot be pushed out from the topside of the Bi films due to the Cr (or $SiO_2$) layer. Instead, Bi nanowires grow laterally as a mean s of releasing the compressive stress. We fabricated a self-assembled Bi nanobridge (d=192 nm) device in-situ using OFF-ON through annealing at $250^{\circ}C$ for 10hours. From I-V measurements taken on the Bi nanobridge device, contacts to the nanobridge were found highly ohmic. The quality of the Bi nanobridge was also proved by the high MR of 123% obtained from transverse MR measurements. These results manifest the possibility of self-assembled nanowire interconnection between various nanostructures for a variety of applications and provide a simple device fabrication method to investigate transport properties on nanowires without complex patterning and etching processes.

  • PDF

플라즈마 이온 식각 공정을 이용한 피라미드 구조의 결정질 실리콘 태양전지 텍스쳐링

  • Jo, Jun-Hwan;Gong, Dae-Yeong;Seo, Chang-Taek;Yun, Seong-Ho;Jo, Chan-Seop;Kim, Bong-Hwan;Lee, Jong-Hyeon
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2011.02a
    • /
    • pp.373-375
    • /
    • 2011
  • 최근 태양전지 연구에서 저가격화를 실현하는 방법 중 하나로 폐 실리콘 웨이퍼를 재생하는 방법에 관하여 많은 연구가 진행되고 있다. 그러나 기존 웨이퍼 재생공정은 높은 재처리 비용과 복잡한 공정등의 많은 단점을 가지고 있다. 결정형 태양전지에서 저가격화 및 고효율은 태양전지를 제작하는데 있어 필수 요소 이다. 그 중 결정질 태양전지 고효율을 위한 여러 연구 방법 중 표면 텍스쳐링(texturing)에 관한 연구가 활발하다. 텍스쳐링은 표면반사에 의한 광 손실을 최소화 하여 효율을 증가시키기 위한 방법으로 습식 식각과 건식 식각을 사용하여 태양전지 표면 위에 요철 및 피라미드구조를 형성하여 반사율을 최소화 시킨다. 건식식각은 습식식각과 다른 환경적 오염이 적은 것과 소량의 가스만으로 표면 텍스쳐링이 가능하여 많은 연구가 진행중이다. 건식 식각 중 하나인 RIE(reactive ion etching)는 고주파를 이용하여 플라즈마의 이온과 silicon을 반응 시킨다. 실험은 RIE를 이용하여 SF6/02가스를 혼합하여 비등방성 에칭 및 피라미드 구조를 구현하였다. RIE 공정 중 SF6/02가스는 높은 식각 율을 갖으며 self-masking mechanism을 통해 표면이 검게 변화되고 반사율이 감소하게 된다. 이 과정을 통해 블랙 실리콘을 형성하게 된다. 블랙 실리콘은 반사율 10% 이하로 self-masking mechanism으로 바늘모양의 구조를 형성되는 게 특징이며 표면이 검은색으로 반사율이 낮아 효율증가로 예상되지만 실제 바늘 모양의 블랙 실리콘은 태양전지 제작에 있어 후속 공정 인 전극 형성 시 Ag Paste의 사이즈와 표면 구조를 감안할 때 태양 전지 제작 시 Series resistance를 증가로 효율 저하를 가져온다. 본 연구는 SF6/02가스를 혼합하여 기존 RIE로 형성된 바늘모양의 구조의 블랙 실리콘이 아닌 RIE 내부에 metal-mesh를 장착하여 단결정(100)실리콘 웨이퍼 표면을 텍스쳐링 하였고 SF6/02 가스 1:1 비율로 공정을 진행 하였다. metal-mesh 홀의 크기는 100um로 RIE 내부에 장착하여 공정 시간 및 Pressure를 변경하여 실험을 진행하였다. 공정 시간이 변경됨에 따라 단결정(100) 실리콘 웨이퍼 표면에 피라미드 구조의 균일한 1um 크기의 블랙 실리콘을 구현하였다. 바늘모양의 블랙 실리콘을 피라미드 구조로 구현함으로써 바늘 모양의 단점을 보완하여 태양전지 전기적 특성을 분석하여 태양전지 제작시 변환 효율을 증가시킬 것으로 예상된다.

  • PDF

Self-assembly of ZnO Stripes Prepared by Anodization in an Ethanolic Sulfuric Acid (에탄올/황산 혼압액에서 양극산화법을 이용한 자기정렬된 ZnO 줄무늬 구조 제조 연구)

  • Kim, Sung Joong;Choi, Jinsub
    • Korean Chemical Engineering Research
    • /
    • v.46 no.4
    • /
    • pp.686-691
    • /
    • 2008
  • There are no many research reports on the preparation of ZnO by electrochemical oxidation since the zinc oxide is very easily dissolved in an acidic or basic environment, even though zinc oxides have attracted many attentions because of their optical/electrical properties. In this paper, we describe the fabrication of self-ordered stripes of ZnO by anodization of Zn in an ethanolic sulfuric acid. The formation of stripes of ZnO originating from Zn is attributed to water-selective dissolution of ZnO during anodization. We study in detail the effects of concentration of $H_2SO_4$, applied potential, anodization time, and addition of a small amount of water on the fabrication of stripes of ZnO. Mechanisms for the fabrication of ZnO stripes are discussed in terms of the above-mentioned effects.

CONFOCAL LASER SCANNING MICROSCOPIC MORPHOLOGY OF DENTIN-RESIN INTERFACE AND ITS RELATIONSHIP WITH SHEAR BOND STRENGTH (상아질-레진 계면의 공초점 현미경적 형태 및 전단결합강도와의 관계)

  • Choi, Nak-Won;Cho, Byeong-Hoon;Son, Ho-Hyun
    • Restorative Dentistry and Endodontics
    • /
    • v.24 no.2
    • /
    • pp.310-321
    • /
    • 1999
  • In this in vitro study, confocal laser scanning microscopic morphology of dentin-resin interface and its relationship to shear bond strength were investigated after the exposed dentin surfaces were treated with 3 different kinds of dentin adhesive systems[three-step; Scotchbond Multi-Purpose Plus(SMPP), self-priming bonding resin; Single Bond(SB), self-etching primer; Clearfil Liner Bond 2(LB2)]. 52 extracted human molar teeth without caries and/or restorations. The experimental teeth were randomly divided into three groups of seventeen teeth each. In five teeth of each group, class V cavities(depth: 1.5mm) with 900 cavosurface angles were prepared at the cementoenamel junction on buccal and lingual surfaces. Bonding resins of each dentin adhesive system were mixed with rhodamine B. Primer of SMPP was mixed with fluorescein. In group 1. the exposed dentin was conditioned with etchant, applied with above primer and bonding resin of SMPP. In group 2, with etchant and self-priming bonding agent of SB. In group 3, with self-etching primer and bonding agent of LB2. After treatment with dentin adhesive systems, composite resin were applied and photocured. The experimental teeth were cut longitudinally through the center line of restoration and grounded so that about $90{\mu}m$-thick wafers of buccolingually orientated dentin were obtained. And, $70{\sim}80{\mu}m$-thick wafers sectioned horizontally, thus presenting a dentinal tubules at 900 to the cut surface of a remaining tooth, were obtained. Primer of SMPP mixed with rhodamine B was applied to these wafers. Confocal laser scanning microscopic investigations of these wafers were done within of 24 hours after treatment. To measure shear bond strength, the remaining twelve teeth of each group were grounded horizontally below the dentinoenamel junction, so that no enamel remained. After applying dentin adhesive systems on the dentin surface, composite was applied in the shape of cylinder. The cylinder was 5mm in diameter, and 2mm in thickness. Shear bond strength was measured using Instron with a cross-head speed of 0.5mm/min. It was concluded as follows ; 1. Hybrid layer of SMPP(mean: $4.56{\mu}m$) was thicker than that of any other groups. This value was not statistically significant thicker than that of SB(mean: $3.41{\mu}m$, p>0.05), and significant thicker than that of LB2(mean: $1.56{\mu}m$, p<0.05). There was a statistical difference between SB and LB2(p<0.05). 2. Although there were variations in the length of resin tag even in a sample, and in a group, most samples in SMPP and SB showed resin tags extending above $20{\mu}m$. But samples in LB2 showed resin tags of $10{\mu}m$ at best. 3. Besides primer's infiltration into demineralized peritubular dentin and dentinal tubules, fluorophore of primer was detected in the lateral branches of dentinal tubules. 4. All groups demonstrated statistically significant differences from one another(p<0.05), with shear bond strengths given in descending order as follows: SMPP(18.3MPa), SB(16.0MPa) and LB2(12.4MPa). 5. LB2 having thinnest hybrid layer($1.56{\mu}m$) showed the lowest shear bond strength(12.4MPa).

  • PDF