Self-assembly of ZnO Stripes Prepared by Anodization in an Ethanolic Sulfuric Acid

에탄올/황산 혼압액에서 양극산화법을 이용한 자기정렬된 ZnO 줄무늬 구조 제조 연구

  • Kim, Sung Joong (Nanomaterial Application Division, Korea Institute of Ceramic Engineering and Technology (KICET)) ;
  • Choi, Jinsub (Nanomaterial Application Division, Korea Institute of Ceramic Engineering and Technology (KICET))
  • 김성중 (요업(세라믹)기술원, 청정 바이오소재팀) ;
  • 최진섭 (요업(세라믹)기술원, 청정 바이오소재팀)
  • Received : 2008.03.20
  • Accepted : 2008.05.06
  • Published : 2008.08.31

Abstract

There are no many research reports on the preparation of ZnO by electrochemical oxidation since the zinc oxide is very easily dissolved in an acidic or basic environment, even though zinc oxides have attracted many attentions because of their optical/electrical properties. In this paper, we describe the fabrication of self-ordered stripes of ZnO by anodization of Zn in an ethanolic sulfuric acid. The formation of stripes of ZnO originating from Zn is attributed to water-selective dissolution of ZnO during anodization. We study in detail the effects of concentration of $H_2SO_4$, applied potential, anodization time, and addition of a small amount of water on the fabrication of stripes of ZnO. Mechanisms for the fabrication of ZnO stripes are discussed in terms of the above-mentioned effects.

산화아연은 광학적/전기적 특성 때문에 많이 연구되고 있는 재료이지만 산, 염기분위기에 약하기 때문에 양극 산화법을 이용하여 제조하기 힘들며, 현재 보고 되어 지고 있는 연구결과 역시도 많지 않다. 본 논문에서는 일반적인 전해질인 수용액이 아닌 에탄올과 $H_2SO_4$의 혼합용액을 사용하여 양극산화 하였으며 수용액에서 제조된 ZnO와는 다른 자기 정렬된 줄무늬의 육각판상구조를 가진 ZnO를 제조할 수 있었다. 이는 $H_2SO_4$를 함유한 에탄올용액에서 $H_2SO_4$에 미량 포함된 $H_2O$가 ZnO의 선택적인 용해를 함으로서 자기 정렬된 구조를 만드는데 기인한다. $H_2SO_4$의 농도, 인가전압, 양극산화 시간, 물 첨가 등에 따른 영향 및 자기 정렬된 줄무늬의 육각판상구조를 생성하는 메커니즘을 다루었다.

Keywords

References

  1. Chick, H., Liang, J., Cloutier, S., Kouklin, N. and Xu, J., "Periodic Array of Uniform ZnO Nanorods by Second-order Selfassembly," Appl. Phys. Lett., 84, 3376-3378(2004) https://doi.org/10.1063/1.1728298
  2. Huang, M. H., Mao, S., Feick, H., Yan, H., Wu, Y., Kind, H., Weber, E., Russo, R. and Yang, P., "Room-Temperature Ultraviolet Nanowire Nanolasers," Science, 292, 1897-1899(2001) https://doi.org/10.1126/science.1060367
  3. Pearton, S. J., Norton, D. P., Ip, K., Heo, Y. W. and Steiner, T., "Recent Advances in Processing of ZnO," J. Vac. Sci. Technol., B22932-22948(2004)
  4. Park, W., Yi, G., Kim, M. and Pennycook, S., "ZnO Nanoneedles Grown Vertically on Si Substrates by Non-catalytic Vaporphase Epitaxy," Adv. Mater., 14, 1841-1843(2002) https://doi.org/10.1002/adma.200290015
  5. Kong, Y., Yu, D., Zhang, B., Fang, W. and Feng, S., "Ultravioletemitting ZnO Nanowires Synthesized by a Physical Vapor Deposition Approach," Appl. Phys. Lett., 78, 407-409(2001) https://doi.org/10.1063/1.1342050
  6. Zhang, H., Sun, X., Wang, R. and Yu, D., "Growth and Formation Mechanism of c-oriented ZnO Nanorod Arrays Deposited on Glass," J. Cryst. Growth, 269, 464-471(2004) https://doi.org/10.1016/j.jcrysgro.2004.05.078
  7. Wu, J. and Liu, S., "Low-Temperature Growth of Well-Aligned ZnO Nanorods by Chemical Vapor Deposition," Adv. Mater., 14, 215-218(2002) https://doi.org/10.1002/1521-4095(20020205)14:3<215::AID-ADMA215>3.0.CO;2-J
  8. Peterson, R., Fields, C. and Gregg, B., "Epitaxial Chemical Deposition of ZnO Nanocolumns from NaOH Solutions," Langmuir, 20, 5114-5118(2004) https://doi.org/10.1021/la049683c
  9. Tian, Z., Voigt, J., Liu, J., Mckenzie, B., Mcdermott, M., Rodriguez, M., Konishi, H. and Xu, H., "Complex and oriented ZnO nanostructures," Nat. Mater., 2, 821-826(2003) https://doi.org/10.1038/nmat1014
  10. Choi, J., "Fabrication of Monodomain Porous Alumina Using Nanoimprint Lithography and its Applications," Martin-Luther-Universitt (2004)
  11. Birss, V., Xia, S., Yue, R. and Rateick, R. G., "Characterization of Oxide Films Formed on Mg-based WE43 Alloy Using AC/DC Anodization in Silicate Solutions," J. Electrochem. Soc., 151, B1-B10(2004) https://doi.org/10.1149/1.1629095
  12. Takebe, J., Itoh, S., Okada, J. and Ishibashi, K., "Anodic Oxidation and Hydrothermal Treatment of Titanium Results in a Surface that Causes Increased Attachment and Altered Cytoskeletal Morphology of Rat Bone Marrow Stromal Cells in Vitro," J. Biomed. Mater. Res., 51, 398-407(2000) https://doi.org/10.1002/1097-4636(20000905)51:3<398::AID-JBM14>3.0.CO;2-#
  13. Delplancke, J. L., Degrez, M., Fontana, A. and Winand, R., "Self-color Anodizing of Titanium," Surf. Technol., 16, 153-162(1982) https://doi.org/10.1016/0376-4583(82)90033-4
  14. Choi, J., Lim, J. H., Lee, S. C., Chang, J. H., Kim, K. J. and Cho, M. A., "Porous Niobium Oxide Films Prepared by Anodization in HF/$H_{3}PO_{4}$," Electrochim. Acta, 51, 5502-5507(2006) https://doi.org/10.1016/j.electacta.2006.02.024
  15. Macak, J. M., Tsuchiya, H. and Schmuki, P., "High-Aspect-Ratio $TiO_2$ Nanotubes by Anodization of Titanium," Angew. Chem. Int. Ed., 44, 2100-2102(2005) https://doi.org/10.1002/anie.200462459
  16. Lim, J. H. and Choi, J., "Titanium Oxide Nanowires Originating from Anodically Grown Nanotubes: The Bamboo-Splitting Model," Small, 3, 1504-1507(2007) https://doi.org/10.1002/smll.200700114
  17. Mor, G. K., Varghese, O. K., Paulose, M., Shankar, K. and Grimes, C. A., "A Review on Highly Ordered, Vertically Oriented $TiO_2$ Nanotube Arrays: Fabrication, Material Properties, and Solar Energy Applications," Sol. Energy Mater. Solar Cells, 90, 2011-2075(2006) https://doi.org/10.1016/j.solmat.2006.04.007
  18. Kim, S. J. and Choi, J., Electrochim. Acta, submitted for publication
  19. Chang, S. S., Yoon, S. O., Parkand, H. J. and Sakai, A., "Luminescence Properties of Anodically Etched Porous Zn," Appl. Surf. Sci., 158, 330-334(2000) https://doi.org/10.1016/S0169-4332(00)00039-8
  20. Chang, S. S., Yoon, S. O., Park, H. J. and Sakai, A., "Luminescence Properties of Zn Nanowires Prepared by Electrochemical Etching," Mater. Lett., 53, 432-436(2002) https://doi.org/10.1016/S0167-577X(01)00521-3
  21. Huang, G. S., Wu, X. L., Cheng, Y. C., Shen, J. C., Huang, A. P. and Chu, P. K., "Fabrication and Characterization of Anodic ZnO Nanoparticles," Appl. Phys., A86, 463-467(2007)
  22. Wu, X., Lu, G., Li, C. and Shi, G., "Room-temperature fabrication of Highly Oriented ZnO Nanoneedle Arrays by Anodization of Zinc Foil," Nanotechnology, 17, 4936-4940(2006) https://doi.org/10.1088/0957-4484/17/19/026
  23. Kuan, C. Y., Chou, J. M., Leu, I. C. and Hon, M. H., "Formation and Field Emission Property of Single-crystalline Zn Microtip Arrays by Anodization," Electrochem. Commun., 9, 2093-2097(2007) https://doi.org/10.1016/j.elecom.2007.06.004
  24. Yu, H., Zhang, Z., Han, M., Hao, X. and Zhu, F., "A General Low-temperature Route for Large-scale Fabrication of Highly Oriented ZnO Nanorod/nanotube Arrays," J. Am. Chem. Soc., 127, 2378-2379(2005) https://doi.org/10.1021/ja043121y
  25. Zhang, Z., Yu, H., Shao, X. and Han, M., "Near-room-temperature Production of Diameter-tunable ZnO Nanorod Arrays through Natural Oxidation of Zinc Metal," Chem. Eur. J., 11, 3149-3154(2005) https://doi.org/10.1002/chem.200401153
  26. Bouchard, M. and Smith, D. C., "Catalogue of 45 Reference Raman Spectra of Minerals Concerning Research in Art History or Archaeology, Especially on Corroded Metals and Coloured Glass," Spectrochim. Acta, 59, 2247-2266(2003) https://doi.org/10.1016/S1386-1425(03)00069-6