• 제목/요약/키워드: Self assembled structure

검색결과 144건 처리시간 0.027초

Three-Dimensional Self-Assembled Micro-Array Using Magnetic Force Interaction

  • Park, Yong-Sung;Kwon, Young-Soo;Eiichi Tamiya;Park, Dae-Hee
    • KIEE International Transactions on Electrophysics and Applications
    • /
    • 제3C권5호
    • /
    • pp.182-188
    • /
    • 2003
  • We have demonstrated a fluidic technique for self-assembly of microfabricated parts onto substrate using patterned shapes of magnetic force self-assembled monolayers (SAMs). The metal particles and the array were fabricated using the micromachining technique. The metal particles were in a multilayer structure (Au, Ti, and Ni). Sidewalls of patterned Ni dots on the array were covered by thick negative photoresist (SU-8), and the array was magnetized. The array and the particles were mixed in buffer solution, and were arranged by magnetic force interaction. Binding direction of the metal particle onto Ni dots was controlled by multilayer structure and direction of magnetization. A quarter of total Ni dots were covered by the particles. The binding direction of the particles was controllable, and condition of particles was almost even with the Au surface on top. The particles were successfully arranged on the array.

Self-Assembled Structures of Glutaric Acid on Cu(110)

  • 박은희;민영환;김세훈
    • 한국진공학회:학술대회논문집
    • /
    • 한국진공학회 2013년도 제44회 동계 정기학술대회 초록집
    • /
    • pp.270-270
    • /
    • 2013
  • We have investigated the self-assembled structures of glutaric acid (HOOC-(CH2)3-COOH) on the Cu(110) surface as a function of coverage using Scanning Tunneling Microscopy (STM). At low coverage, glutaric acid molecules diffuse freely on Cu(110) surface at room temperature, thus they can't form ordered structures at this coverage. However, when we scanned the same area several times, novel structures have been created during scanning due to the field-induced self-assembly. Also, the induced structures are quite stable during continuous scanning process. At 0.25 ML, glutaric acid adsorbs as a bi-glutarate (-OOC(CH2)3-COO-) after annealing to 450 K producing a racemic conglomerate of coexisting mirror domains. Although the molecule is achiral, it forms chiral domains on the surface from adsorption-induced asymmetrization. At 0.5 ML coverage, zigzag structure is observed, and still gltutaric acid adsorbs as a bidentate configuration. This bi-glutarate structure is stable until 650. Finally, at 1ML, glutaric acid adsorbs as a mono-glutarate at room temperature forming close packed structures.

  • PDF

Surface Structures and Thermal Desorption Behaviors of Cyclopentanethiol Self-Assembled Monolayers on Au(111)

  • Kang, Hun-Gu;Kim, You-Young;Park, Tae-Sun;Park, Joon-B.;Ito, Eisuke;Hara, Masahiko;Noh, Jae-Geun
    • Bulletin of the Korean Chemical Society
    • /
    • 제32권4호
    • /
    • pp.1253-1257
    • /
    • 2011
  • The surface structures, adsorption conditions, and thermal desorption behaviors of cyclopentanethiol (CPT) self-assembled monolayers (SAMs) on Au(111) were investigated by scanning tunneling microscopy (STM), X-ray photoelectron spectroscopy (XPS), and thermal desorption spectroscopy (TDS). STM imaging revealed that although the adsorption of CPT on Au(111) at room temperature generates disordered SAMs, CPT molecules at $50^{\circ}C$ formed well-ordered SAMs with a $(2{\surd}3{\times}{\surd}5)R41^{\circ}$ packing structure. XPS measurements showed that CPT SAMs at room temperature were formed via chemical reactions between the sulfur atoms and gold surfaces. TDS measurements showed two dominant TD peaks for the decomposed fragments ($C_5H_9^+$, m/e = 69) generated via C-S bond cleavage and the parent molecular species ($C_5H_9SH^+$, m/e = 102) derived from a recombination of the chemisorbed thiolates and hydrogen atoms near 440 K. Interestingly, dimerization of sulfur atoms in n-alkanethiol SAMs usually occurs during thermal desorption and the same reaction did not happen for CPT SAMs, which may be due to the steric hindrance of cyclic rings of the CPT molecules. In this study, we demonstrated that the alicyclic ring of organic thiols strongly affected the surface structure and thermal desorption behavior of SAMs, thus providing a good method for controlling chemical and physical properties of organic thiol SAMs.

Self-Assembled Monolayers of Dioctyl Diselenides on Au(111)

  • Choi, Jung-Seok;Lee, Yoon-Jung;Kang, Hun-Gu;Han, Jin-Wook;Noh, Jae-Geun
    • Bulletin of the Korean Chemical Society
    • /
    • 제29권6호
    • /
    • pp.1229-1232
    • /
    • 2008
  • The surface structure, electrochemical behavior, and wetting property of self-assembled monolayers (SAMs) formed by dioctyl diselenide (DODSe) on Au(111) were investigated by scanning tunneling microscopy (STM), cyclic voltammetry (CV), and contact angle measurements. In contrast to the formation of well-ordered SAMs by octanethiol on Au(111), the SAMs formed by DODSe have a disordered phase and many unusual vacancy islands (VIs). In addition, the formation of DODSe SAMs is largely influenced by the solution concentration used. DODSe SAMs formed in 5 $\mu$ M and 50 $\mu$ M solutions have two mixed domains consisting of missing-row ordered phases and disordered phases, while DODSe SAMs formed in 1 mM and 5 mM solutions have only disordered phases with an abnormally high VI fraction of 22-24%. We also found that the wetting property and electrochemical behavior of DODSe SAMs on Au(111) are markedly influenced by the formation of ordered SAMs and the density of VIs.

펨토초레이저와 자기조립박막을 이용한 나노스케일 패터닝 (Nanoscale Patterning Using Femtosecond Laser and Self-assembled Monolayers (SAMs))

  • 장원석;최무진;김재구;조성학;황경현
    • 대한기계학회논문집A
    • /
    • 제28권9호
    • /
    • pp.1270-1275
    • /
    • 2004
  • Standard positive photoresist techniques were adapted to generate nano-scale patterns of gold substrate using self-assembled monolayers (SAMs) and femtosecond laser. SAMs formed by the adsorption of alkanethiols onto gold substrate are employed as very thin photoresists, Alkanethiolates formed by the adsorption of alkanethiols are oxidized on exposure to UV light in the presence of air to alkylsulfonates. Specifically, it is known that deep UV light of wavelength less than 200nm is necessary for oxidation to occur. In this study, ultrafast laser of wavelength 800nm and pulse width 200fs is applied for photolithography. Results show that ultrafast laser of visible range wavelength can replace deep UV laser source for photo patterning using thin organic films. Femtosecond laser coupled near-field scanning optical microscopy facilitates not only the patterning of surface chemical structure, but also the creation of three-dimensional nano-scale structures by combination with suitable etching methods.

STM에 의한 Dipyridinium 유기분자의 전압-전류 특성 연구 (A Study on the Current-voltage Properties of Dipyridinium Molecule using Scanning Tunneling Microscopy)

  • 이남석;신훈규;장정수;권영수
    • 한국전기전자재료학회논문지
    • /
    • 제18권7호
    • /
    • pp.622-627
    • /
    • 2005
  • In this study, electrical properties of self-assembled dipyridinium dithioacetate molecule onto the Au(111) substrate is observed using Scanning Tunneling Microscopy(STM) by vortical structure of STM probe. At first, the Au(111) substrate is cleaned by piranha solution$(H_2SO_4:H_2O_2\;=\;3:1)$. Subsequently, 1 mM/ml of dipyridinium dithioacetate molecule is self-assembled onto the Au(111) surface. Using STM, the images of dipyridinium dithioacetate molecule which is self-assembled onto the Au(111) substrate, can be observed. In addition, the electrical properties(I-V) of dipyridinium dithioacetate can also be examined by using Scanning Tunneling Spectroscopy(STS). From the results of the measurement of the current-voltage(I-V), the property of Negative Differential Resistance(NDR) that shows the decreases of current according to the increases of voltage is observed. We found the NDR voltage of the dipyridinium dithioacetate is -1.42 V(negative region) and 1.30 V(positive region), respectively.

Surface Potential Change Depending on Molecular Orientation of Hexadecanethiol Self-Assembled Monolayers on Au(111)

  • Ito, Eisuke;Arai, Takayuki;Hara, Masahiko;Noh, Jaegeun
    • Bulletin of the Korean Chemical Society
    • /
    • 제30권6호
    • /
    • pp.1309-1312
    • /
    • 2009
  • Surface potential and growth processes of hexadecanethiol (HDT) self-assembled monolayers (SAMs) on Au(111) surfaces were examined by Kelvin probe method and scanning tunneling microscopy. It was found that surface potential strongly depends on surface structure of HDT SAMs. The surface potential shift for the striped phase of HDT SAMs chemisorbed on Au(111) surface was +0.45 eV, which was nearly the same as that of the flat-lying hexadecane layer physisorbed on Au(111) surface. This result indicates that the interfacial dipole layer induced by adsorption of alkyl chains is a main contributor to the surface potential change. In the densely-packed HDT monolayer, further change of the surface potential was observed, suggesting that the dipole moment of the alkanethiol molecules is an origin of the surface potential change. These results indicate that the work function of a metal electrode can be modified by controlling the molecular orientation of an adsorbed molecule.

Soft-Lithographic Fabrication of Ni Nanodots Using Self-Assembled Surface Micelles

  • Seo, Young-Soo;Lee, Jung-Soo;Lee, Kyung-Il;Kim, Tae-Wan
    • Journal of Magnetics
    • /
    • 제13권2호
    • /
    • pp.53-56
    • /
    • 2008
  • This study proposes a simple nano-patterning process for the fabrication of magnetic nanodot arrays on a large area substrate. Ni nanodots were fabricated on a large area (4 inches in diameter) Si substrate using the soft lithographic technique using self-assembled surface micelles of Polystyrene-block-Poly(methyl methacrylate) (PS-b-PMMA) diblock copolymer formed at the air/water interface as a mask. The hexagonal array of micelles was successfully transferred to a Ni thin film on a Si substrate using the Langmuir-Blodgett technique. After ion-mill dry etching, a magnetic Ni nanodot array with a regular hexagon array structure was obtained. The Ni nanodot array showed in-plane easy axis magnetization and typical soft magnetic properties.

Field Effect Transistor of Vertically Stacked, Self-assembled InAs Quantum Dots with Nonvolatile Memory

  • Li, Shuwei;Koike, Kazuto;Yano, Mitsuaki
    • JSTS:Journal of Semiconductor Technology and Science
    • /
    • 제2권3호
    • /
    • pp.170-172
    • /
    • 2002
  • The epilayer of vertically stacked, self-assembled InAs Quantum Dots (QDs)was grown by MBE with solid sources in non-cracking K-cells, and the sample was fabricated to a FET structure using a conventional technology. The device characteristic and performance were studied. At 77K and room temperature, the threshold voltage shift values are 0.75V and 0.35 V, which are caused by the trapping and detrapping of electrons in the quantum dots. Discharging and charging curves form the part of a hysteresis loop to exhibit memory function. The electrical injection of confined electrons in QDs products the threshold voltage shift and memory function with the persistent electron trapping, which shows the potential use for a room temperature application.

Highly sensitive gas sensor using hierarchically self-assembled thin films of graphene oxide and gold nanoparticles

  • Ly, Tan Nhiem;Park, Sangkwon
    • Journal of Industrial and Engineering Chemistry
    • /
    • 제67권
    • /
    • pp.417-428
    • /
    • 2018
  • In this study, we fabricated hierarchically self-assembled thin films composed of graphene oxide (GO) sheets and gold nanoparticles (Au NPs) using the Langmuir-Blodgett (LB) and Langmuir-Schaefer (LS) techniques and investigated their gas-sensing performance. First, a thermally oxidized silicon wafer ($Si/SiO_2$) was hydrophobized by depositing the LB films of cadmium arachidate. Thin films of ligand-capped Au NPs and GO sheets of the appropriate size were then sequentially transferred onto the hydrophobic silicon wafer using the LB and the LS techniques, respectively. Several different films were prepared by varying the ligand type, film composition, and surface pressure of the spread monolayer at the air/water interface. Their structures were observed by scanning electron microscopy (SEM) and atomic force microscopy (AFM), and their gas-sensing performance for $NH_3$ and $CO_2$ was assessed. The thin films of dodecanethiol-capped Au NPs and medium-sized GO sheets had a better hierarchical structure with higher uniformity and exhibited better gas-sensing performance.