• Title/Summary/Keyword: Self Oscillating Mixer(SOM)

Search Result 8, Processing Time 0.018 seconds

A Design of Monolithic LNB Downconverter Using Self Oscillating Mixer for DBS Application (SOM을 이용한 DBS위성통신용 LNB Downconverter의 설계)

  • 조재현;양홍선;박창열;박정호
    • Proceedings of the IEEK Conference
    • /
    • 2002.06a
    • /
    • pp.435-438
    • /
    • 2002
  • A design of Ku-band(11.7~12.20Hz) monolithic microwave integrated circuit(MMIC) low noise block(LNB) downconverter using self oscillating mixer (SOM) for direct broadcast satellite(DBS) application is presented The proposed LNB downconverter is composed of low noise amplifier(LNA), image reject filter(IRF), SOM , low pass filter(LPF). The conversion gain is 30dB , VSn is less than 1.7: 1 and overall noise figure is less than 1.2dB.

  • PDF

A Study on the Self-Oscillating Mixer

  • Park, K. D.;S. Sakurazawa;H. Arai
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2000.05a
    • /
    • pp.132-134
    • /
    • 2000
  • This paper presents self-oscillating mixer(SOM) with simple structure which includes dc source, a cross type groove, and a three terminal GaAsFET. By using parasitic elements such as cooper wires, If level of the active antenna is increased. In order to include active device into FDTD analysis, equivalent voltage source are used to substitute for the active device and to describe the voltage-current relationships. This approach is applied to analyze SOM theoretically.

  • PDF

Design of High Stable Self-Oscillating Mixer for Microwave Transceiver (마이크로파 트랜시버용 고안정 자기발진믹서의 설계)

  • 정인기;이영철;김영진
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2000.05a
    • /
    • pp.139-142
    • /
    • 2000
  • In this paper, we designed a Self-Oscillating mixer(SOM) for Microwave Transceiver. Implemention of SOM shows the output power of 4.33dBm at 10.750Hz and the phase-noise of -102dBc/Hz at 100KHZ offset frequency, Applying the input frequency band 11.7GHz∼12.9GHz, The designed SOM If frequency is 950MHz∼2150MHz and its conversion gain is 6dB in the If band. We convinced that SOM is applied to a digital transceiver down-converter

  • PDF

Design of A Self-Oscillating Mixer Using A Novel DGS (새로운 DGS구조를 이용한 자기 발진 혼합기 설계)

  • Joung, Myung-Sup;Kim, Jong-Ok;Park, Jun-Seok;Lim, Jae-Bong;Kim, Heong-Seok;Cho, Hong-Goo
    • Proceedings of the KIEE Conference
    • /
    • 2003.07c
    • /
    • pp.1958-1960
    • /
    • 2003
  • Here we describe a unique self-oscillating mixer (SOM) design using a modified defected ground structure (DGS) for down-converter. Proposed SOM is consisted of self-oscillator, which can produce negative resistance and select resonance frequency, and input/output matching filter. As the advantage of this SOM can be reused by module that mix signals with transistor that is used to oscillator, it is simply and low-costly designed Also, there is easy advantage to be applied in RFIC/ MMIC technology because it offers excellent high Q value in spite of using micro-strip structure. Designed self-oscillating frequency is 1.04GHz and RF frequency established is 0.8GHz. It was achieved 20dB conversion loss and phase noise of -95dBc/Hz at 100KHz offset frequency over intermediate frequency (IF). The equivalent circuit parameters for DGS are extracted by using a three dimensional EM simulator and simple circuit analysis method.

  • PDF

Design and Fabrication of Self-Oscillating Mixer Using Subharmonic Injection Locked Oscillator for 5GHz (주입 동기 방식을 이용한 5GHz 대역 자기발진 주파수 혼합기의 설계 및 제작)

  • 류재종;이주갑;류원열;윤영섭;최현철
    • Proceedings of the IEEK Conference
    • /
    • 2003.11c
    • /
    • pp.86-89
    • /
    • 2003
  • In this paper, Self-Oscillating Mixer is designed by oscillator that was based on a general nonlinear input-output model for the subharmonic injection locked oscillator is analysed. We have designed and fabricated the Self-Oscillating Mixer for 5GHz by proposed subharmonic injection locked oscillator based frequency synthesizer structure that have characteristic of good frequency sensitivity, good phase noise. The design strategy leading to an optimized SILO with regards to its locking range is described and a test SOM circuit is demonstrated a 4dB conversion gain at 280MHz IF frequency from the carrier.

  • PDF

Design of A Self Oscillating and Mixing Frequency Down-Converter Using A DGS (DGS 구조를 이용한 자기발진혼합형 주파수 하향변환기 설계)

  • 정명섭;박준석;김형석;임재봉
    • The Transactions of the Korean Institute of Electrical Engineers C
    • /
    • v.52 no.11
    • /
    • pp.536-543
    • /
    • 2003
  • In this paper, we describe a unique self oscillating and mixing (SOM) down-converter design using a modified defected ground structure (DGS). The proposed SOM converter is consisted of self-oscillator, which can produce negative resistance and select resonance frequency, RF matching circuit, and IF low pass filter. As the advantage of this SOM converter can mix LO and RF signals as well as inducing LO signal with only one active device. it is designed as a simple structure and the low cost. Also, there is easy advantage to be applied in RFIC/MMIC technology because it offers excellent phase noise performance in spite of using micro-strip structure. The LO signal for the proposed SOM converter is designed at 1㎓ and RF frequency was chosen to be 800MHz. The achieved conversion loss and phase noise performances of the implemented SOM converter are 15㏈ and -95dBc/Hz at 100KHz offset frequency respectively. The equivalent circuit parameters for DGS are extracted by using a three dimensional EM simulator and simple circuit analysis method.

Design of X-Band SOM for Doppler Radar (도플러 레이더를 위한 X-Band SOM 설계)

  • Jeong, Sun-Hwa;Hwang, Hee-Yong
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.24 no.12
    • /
    • pp.1167-1172
    • /
    • 2013
  • This paper presents a X-band doppler radar with high conversion gain using a self-oscillating-mixer(SOM) that oscillation and frequency mixing is realized at the same time. To improve phase noise of the SOM oscillator, a ${\lambda}/2$ slotted square patch resonator(SSPR) was proposed, which shows high Q-factor of 175.4 and the 50 % reduced circuit area compared to the conventional resonator. To implement the low power system, low biasing voltage of 1.7 V was supplied. To enhance the conversion gain of the SOM, bias circuit is configured near the pinch-off region of transistor, and the conversion gain was optimized. The output power of the proposed SOM was -3.16 dBm at 10.65 GHz. A high conversion gain of 9.48 dB was obtained whereas DC Power consumption is relatively low about 7.65 mW. The phase noise is -90.91 dBc/Hz at 100 kHz offset. The figure-of-merit(FOM) of the proposed SOM was measured as -181.8 dBc/Hz, which is supplier to other SOMs by more than about 7 dB.

A Highly Linear Self Oscillating Mixer Using Second Harmonic Injection (2차 고조파 주입을 사용한 고 선형성의 자체 발진 혼합기)

  • Kim, Min-Hoe;Cho, Choon-Sik;Lee, Jae-Wook
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.23 no.6
    • /
    • pp.682-690
    • /
    • 2012
  • In this paper, a highly linear self oscillating mixers(SOM) using second harmonic injections are presented. The H-slot defected ground structure(DGS) is designed as a balanced resonator for oscillation in the proposed SOM. Since the H-slot DGS resonator achieves a high Q factor, it is a suitable structure to provide low phase noise for the oscillator. The single balanced mixer is utilized in this work and it provides good LO-RF isolation since balanced LO signals are suppressed at the RF input port. In order to inject the second harmonic of the IF, we propose two different methods using feedback loops. In the first method, IF achieves a 3.08 dB conversion gain at 226 MHz with input power of -20 dBm at 5 GHz RF input signal. The IF achieves 2 dB conversion gain at 423 MHz with the input power of -20 dBm at 5.2 GHz RF input signal in the second method. The measured IMD3s are 61.8 dB and 65 dB for the each method. These SOMs present improved linearity compared to that without the second harmonic injection because IMD3s are improved by 18. dB and 21 dB for each method.