• Title/Summary/Keyword: Self Learning Fuzzy Control Algorithm

Search Result 41, Processing Time 0.027 seconds

Design of a Neural Network Based Self-Tuning Fuzzy PID Controller (신경회로망 기반 자기동조 퍼지 PID 제어기 설계)

  • Im, Jeong-Heum;Lee, Chang-Goo
    • The Transactions of the Korean Institute of Electrical Engineers D
    • /
    • v.50 no.1
    • /
    • pp.22-30
    • /
    • 2001
  • This paper describes a neural network based fuzzy PID control scheme. The PID controller is being widely used in industrial applications. However, it is difficult to determine the appropriated PID gains in nonlinear systems and systems with long time delay and so on. In this paper, we re-analyzed the fuzzy controller as conventional PID controller structure, and proposed a neural network based self tuning fuzzy PID controller of which output gains were adjusted automatically. The tuning parameters of the proposed controller were determined on the basis of the conventional PID controller parameters tuning methods. Then they were adjusted by using proposed neural network learning algorithm. Proposed controller was simple in structure and computational burden was small so that on-line adaptation was easy to apply to. The experiment on the magnetic levitation system, which is known to be heavily nonlinear, showed the proposed controller's excellent performance.

  • PDF

Fuzzy Neural Networks-Based Call Admission Control Using Possibility Distribution of Handoff Calls Dropping Rate for Wireless Networks (핸드오프 호 손실율 가능성 분포에 의한 무선망의 퍼지 신경망 호 수락제어)

  • Lee, Jin-Yi
    • Journal of Advanced Navigation Technology
    • /
    • v.13 no.6
    • /
    • pp.901-906
    • /
    • 2009
  • This paper proposes a call admission control(CAC) method for wireless networks, which is based on the upper bound of a possibility distribution of handoff calls dropping rates. The possibility distribution is estimated in a fuzzy inference and a learning algorithm in neural network. The learning algorithm is considered for tuning the membership functions(then parts)of fuzzy rules for the inference. The fuzzy inference method is based on a weighted average of fuzzy sets. The proposed method can avoid estimating excessively large handoff calls dropping rates, and makes possibile self-compensation in real time for the case where the estimated values are smaller than real values. So this method makes secure CAC, thereby guaranteeing the allowed CDR. From simulation studies we show that the estimation performance for the upper bound of call dropping rate is good, and then handoff call dropping rates in CAC are able to be sustained below user's desired value.

  • PDF

A Hybrid Modeling Architecture; Self-organizing Neuro-fuzzy Networks

  • Park, Byoungjun;Sungkwun Oh
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2002.10a
    • /
    • pp.102.1-102
    • /
    • 2002
  • In this paper, we propose Self-organizing neurofuzzy networks(SONFN) and discuss their comprehensive design methodology. The proposed SONFN is generated from the mutually combined structure of both neurofuzzy networks (NFN) and polynomial neural networks(PNN) for model identification of complex and nonlinear systems. NFN contributes to the formation of the premise part of the SONFN. The consequence part of the SONFN is designed using PNN. The parameters of the membership functions, learning rates and momentum coefficients are adjusted with the use of genetic optimization. We discuss two kinds of SONFN architectures and propose a comprehensive learning algorithm. It is shown that this network...

  • PDF

Obstacle Avoidance System Using a Single Camera and LMNN Fuzzy Controller (단일 영상과 LM 신경망 퍼지제어기를 적용한 장애물 회피 시스템)

  • Yoo, Sung-Goo;Chong, Kil-To
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.15 no.2
    • /
    • pp.192-197
    • /
    • 2009
  • In this paper, we proposed the obstacle avoidance system using a single camera image and LM(Levenberg-Marquart) neural network fuzzy controller. According to a robot technology adapt to various fields of industry and public, the robot has to move using self-navigation and obstacle avoidance algorithms. When the robot moves to target point, obstacle avoidance is must-have technology. So in this paper, we present the algorithm that avoidance method based on fuzzy controller by sensing data and image information from a camera and using the LM neural network to minimize the moving error. And then to verify the system performance of the simulation test.

CFWC Scheme for Width Control using CCD Measurement System and Fuzzy PID Controller in Hot Strip Mills (CCD 폭 측정 시스템 및 퍼지 PID를 이용한 CFWC 제어기 설계)

  • Park, Cheol Jae
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.19 no.11
    • /
    • pp.991-997
    • /
    • 2013
  • In this paper, we propose a CFWC (CCD and fuzzy PID based width control) scheme to obtain the desired delivery width margin of a vertical rolling mill in hot strip process. A WMS(width measurement system) is composed of two line scan cameras, an edge detection algorithm, a glitch filter, and so on. A dynamic model of the mill is derived from a gauge meter equation in order to design the fuzzy PID controller. The controller is a self-learning structure to select the PID gains from the error and error rate of the width margin. The effectiveness of the proposed CFWC is verified from simulation results under a width disturbance of the entry in the mill. Using a field test, we show that the performance of the width control is improved by the proposed control scheme.

Algorithm and Architecture of Hybrid Fuzzy Neural Networks (하이브리드 퍼지뉴럴네트워크의 알고리즘과 구조)

  • 박병준;오성권;김현기
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2000.10a
    • /
    • pp.372-372
    • /
    • 2000
  • In this paper, we propose Neuro Fuzzy Polynomial Networks(NFPN) based on Polynomial Neural Network(PNN) and Neuro-Fuzzy(NF) for model identification of complex and nonlinear systems. The proposed NFPN is generated from the mutually combined structure of both NF and PNN. The one and the other are considered as the premise part and consequence part of NFPN structure respectively. As the premise part of NFPN, NF uses both the simplified fuzzy inference as fuzzy inference method and error back-propagation algorithm as learning rule. The parameters such as parameters of membership functions, learning rates and momentum coefficients are adjusted using genetic algorithms. As the consequence part of NFPN, PNN is based on Group Method of Data Handling(GMDH) method and its structure is similar to Neural Networks. But the structure of PNN is not fixed like in conventional Neural Networks and self-organizing networks that can be generated. NFPN is available effectively for multi-input variables and high-order polynomial according to the combination of NF with PNN. Accordingly it is possible to consider the nonlinearity characteristics of process and to get better output performance with superb predictive ability. In order to evaluate the performance of proposed models, we use the nonlinear function. The results show that the proposed FPNN can produce the model with higher accuracy and more robustness than any other method presented previously.

  • PDF

MEMBERSHIP FUNCTION TUNING OF FUZZY NEURAL NETWORKS BY IMMUNE ALGORITHM

  • Kim, Dong-Hwa
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.12 no.3
    • /
    • pp.261-268
    • /
    • 2002
  • This paper represents that auto tunings of membership functions and weights in the fuzzy neural networks are effectively performed by immune algorithm. A number of hybrid methods in fuzzy-neural networks are considered in the context of tuning of learning method, a general view is provided that they are the special cases of either the membership functions or the gain modification in the neural networks by genetic algorithms. On the other hand, since the immune network system possesses a self organizing and distributed memory, it is thus adaptive to its external environment and allows a PDP (parallel distributed processing) network to complete patterns against the environmental situation. Also, it can provide optimal solution. Simulation results reveal that immune algorithms are effective approaches to search for optimal or near optimal fuzzy rules and weights.

A Study on the Development of Robust Fault Diagnostic System Based on Neuro-Fuzzy Scheme

  • Kim, Sung-Ho;Lee, S-Sang-Yoon
    • Transactions on Control, Automation and Systems Engineering
    • /
    • v.1 no.1
    • /
    • pp.54-61
    • /
    • 1999
  • FCM(Fuzzy Cognitive Map) is proposed for representing causal reasoning. Its structure allows systematic causal reasoning through a forward inference. By using the FCM, authors have proposed FCM-based fault diagnostic algorithm. However, it can offer multiple interpretations for a single fault. In process engineering, as experience accumulated, some form of quantitative process knowledge is available. If this information can be integrated into the FCM-based fault diagnosis, the diagnostic resolution can be further improved. The purpose of this paper is to propose an enhanced FCM-based fault diagnostic scheme. Firstly, the membership function of fuzzy set theory is used to integrate quantitative knowledge into the FCM-based diagnostic scheme. Secondly, modified TAM recall procedure is proposed. Considering that the integration of quantitative knowledge into FCM-based diagnosis requires a great deal of engineering efforts, thirdly, an automated procedure for fusing the quantitative knowledge into FCM-based diagnosis is proposed by utilizing self-learning feature of neural network. Finally, the proposed diagnostic scheme has been tested by simulation on the two-tank system.

  • PDF

Hybrid Fuzzy Controller for DTC of Induction Motor Drive (유도전동기 드라이브의 DTC를 위한 하이브리드 퍼지제어기)

  • Ko, Jae-Sub;Choi, Jung-Sik;Chung, Dong-Hwa
    • Journal of the Korean Institute of Illuminating and Electrical Installation Engineers
    • /
    • v.25 no.5
    • /
    • pp.22-33
    • /
    • 2011
  • An induction motor operated with a conventional direct self controller(DSC) shows a sluggish response during startup and under changes of torque command. Fuzzy logic controller(FLC) is used in conjection with DSC to minimize these problems. A FLC chooses the switching states based on a set of fuzzy variables. Flux position, error in flux magnitude and error in torque are used as fuzzy state variables. Fuzzy rules are determinated by observing the vector diagram of flux and currents. This paper proposes hybrid fuzzy controller for direct torque control(DTC) of induction motor drives. The speed controller is based on adaptive fuzzy learning controller(AFLC), which provide high dynamics performances both in transient and steady state response. Flux position, error in flux magnitude and error in torque are used as FLC state variables. The speed is estimated with model reference adaptive system(MRAS) based on artificial neural network(ANN) trained on-line by a back-propagation algorithm. This paper is controlled speed using hybrid fuzzy controller(HFC) and estimation of speed using ANN. The performance of the proposed induction motor drive with HFC controller and ANN is verified by analysis results at various operation conditions.

Load Frequency Control using Parameter Self-Tuning fuzzy Controller (파라미터 자기조정 퍼지제어기를 이용한 부하주파수제어)

  • 탁한호;추연규
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.8 no.2
    • /
    • pp.50-59
    • /
    • 1998
  • This paper presents stabilization and adaptive control of flexible single link robot manipulator system by self-recurrent neural networks that is one of the neural networks and is effective in nonlinear control. The architecture of neural networks is a modified model of self-recurrent structure which has a hidden layer. The self-recurrent neural networks can be used to approximate any continuous function to any desired degree of accuracy and the weights are updated by feedback-error learning algorithm. When a flexible manipulator is rotated by a motor through the fixed end, transverse vibration may occur. The motor toroque should be controlled in such a way that the motor rotates by a specified angle, while simultaneously stabilizing vibration of the flexible manipuators so that it is arresed as soon as possible at the end of rotation. Accurate vibration control of lightweight manipulator during the large changes in configuration common to robotic tasks requires dynamic models that describe both the rigid body motions, as well as the flexural vibrations. Therefore, a dynamic models for a flexible single link robot manipulator is derived, and then a comparative analysis was made with linear controller through an simulation and experiment. The results are proesented to illustrate thd advantages and imporved performance of the proposed adaptive control ove the conventional linear controller.

  • PDF