• Title/Summary/Keyword: Self?Organizing Map

Search Result 425, Processing Time 0.027 seconds

Recognize voiced vowel using self organizing map (자기 조직 신경망을 이용한 모음 인식)

  • Jang, Sung-Hwan;Kang, Hoon
    • Proceedings of the Korean Institute of Intelligent Systems Conference
    • /
    • 2001.05a
    • /
    • pp.61-64
    • /
    • 2001
  • 본 논문은 Self Organizing Map을 이용한 한국어의 모음 10개를 인식하는 것을 다루고 있다. 분류기로서 우수한 성능을 보이고 있는 Self Organizing Map의 출력 층을 2차원으로 구성하여 짧은 시간 간격으로 주파수 도메인에서 벡터화 되어진 음성을 입력 층에 인가하여 유사한 출력 층의 분포를 이용하여 모음 10개를 인식하는 분류기로서의 가능성을 보여줄 것이다.

  • PDF

The dynamics of self-organizing feature map with constant learning rate and binary reinforcement function (시불변 학습계수와 이진 강화 함수를 가진 자기 조직화 형상지도 신경회로망의 동적특성)

  • Seok, Jin-Uk;Jo, Seong-Won
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.2 no.2
    • /
    • pp.108-114
    • /
    • 1996
  • We present proofs of the stability and convergence of Self-organizing feature map (SOFM) neural network with time-invarient learning rate and binary reinforcement function. One of the major problems in Self-organizing feature map neural network concerns with learning rate-"Kalman Filter" gain in stochsatic control field which is monotone decreasing function and converges to 0 for satisfying minimum variance property. In this paper, we show that the stability and convergence of Self-organizing feature map neural network with time-invariant learning rate. The analysis of the proposed algorithm shows that the stability and convergence is guranteed with exponentially stable and weak convergence properties as well.s as well.

  • PDF

Self-organizing Feature Map for Global Path Planning of Mobile Robot (이동로봇의 전역 경로계획을 위한 Self-organizing Feature Map)

  • Jeong Se-Mi;Cha Young-Youp
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.23 no.3 s.180
    • /
    • pp.94-101
    • /
    • 2006
  • A global path planning method using self-organizing feature map which is a method among a number of neural network is presented. The self-organizing feature map uses a randomized small valued initial weight vectors, selects the neuron whose weight vector best matches input as the winning neuron, and trains the weight vectors such that neurons within the activity bubble are moved toward the input vector On the other hand, the modified method in this research uses a predetermined initial weight vectors of 1-dimensional string and 2-dimensional mesh, gives the systematic input vector whose position best matches obstacles, and trains the weight vectors such that neurons within the activity bubble are moved toward the input vector. According to simulation results one can conclude that the modified neural network is useful tool for the global path planning problem of a mobile robot.

Design of Reinforcement Learning Controller with Self-Organizing Map (자기 조직화 맵을 이용한 강화학습 제어기 설계)

  • 이재강;김일환
    • The Transactions of the Korean Institute of Electrical Engineers D
    • /
    • v.53 no.5
    • /
    • pp.353-360
    • /
    • 2004
  • This paper considers reinforcement learning control with the self-organizing map. Reinforcement learning uses the observable states of objective system and signals from interaction of the system and environment as input data. For fast learning in neural network training, it is necessary to reduce learning data. In this paper, we use the self-organizing map to partition the observable states. Partitioning states reduces the number of learning data which is used for training neural networks. And neural dynamic programming design method is used for the controller. For evaluating the designed reinforcement learning controller, an inverted pendulum on the cart system is simulated. The designed controller is composed of serial connection of self-organizing map and two Multi-layer Feed-Forward Neural Networks.

Improved Speed of Convergence in Self-Organizing Map using Dynamic Approximate Curve (동적 근사곡선을 이용한 자기조직화 지도의 수렴속도 개선)

  • Kil, Min-Wook;Kim, Gui-Joung;Lee, Geuk
    • Journal of Korea Multimedia Society
    • /
    • v.3 no.4
    • /
    • pp.416-423
    • /
    • 2000
  • The existing self-organizing feature map of Kohonen has weakpoint that need too much input patterns in order to converse into the learning rate and equilibrium state when it trains. Making up for the current weak point, B.Bavarian suggested the method of that distributed the learning rate such as Gaussian function. However, this method has also a disadvantage which can not achieve the right self-organizing. In this paper, we proposed the method of improving the convergence speed and the convergence rate of self-organizing feature map converting the Gaussian function into dynamic approximate curve used in when trains the self-organizing feature map.

  • PDF

A Global Path Planning of Mobile Robot by Using Self-organizing Feature Map (Self-organizing Feature Map을 이용한 이동로봇의 전역 경로계획)

  • Kang Hyon-Gyu;Cha Young-Youp
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.11 no.2
    • /
    • pp.137-143
    • /
    • 2005
  • Autonomous mobile robot has an ability to navigate using both map in known environment and sensors for detecting obstacles in unknown environment. In general, autonomous mobile robot navigates by global path planning on the basis of already made map and local path planning on the basis of various kinds of sensors to avoid abrupt obstacles. This paper provides a global path planning method using self-organizing feature map which is a method among a number of neural network. The self-organizing feature map uses a randomized small valued initial weight vectors, selects the neuron whose weight vector best matches input as the winning neuron, and trains the weight vectors such that neurons within the activity bubble are move toward the input vector. On the other hand, the modified method in this research uses a predetermined initial weight vectors, gives the systematic input vector whose position best matches obstacles, and trains the weight vectors such that neurons within the activity bubble are move toward the input vector. According to simulation results one can conclude that the modified neural network is useful tool for the global path planning problem of a mobile robot.

A METHOD OF IMAGE DATA RETRIEVAL BASED ON SELF-ORGANIZING MAPS

  • Lee, Mal-Rey;Oh, Jong-Chul
    • Journal of applied mathematics & informatics
    • /
    • v.9 no.2
    • /
    • pp.793-806
    • /
    • 2002
  • Feature-based similarity retrieval become an important research issue in image database systems. The features of image data are useful to discrimination of images. In this paper, we propose the highspeed k-Nearest Neighbor search algorithm based on Self-Organizing Maps. Self-Organizing Maps (SOM) provides a mapping from high dimensional feature vectors onto a two-dimensional space. The mapping preserves the topology of the feature vectors. The map is called topological feature map. A topological feature map preserves the mutual relations (similarity) in feature spaces of input data. and clusters mutually similar feature vectors in a neighboring nodes. Each node of the topological feature map holds a node vector and similar images that is closest to each node vector. In topological feature map, there are empty nodes in which no image is classified. We experiment on the performance of our algorithm using color feature vectors extracted from images. Promising results have been obtained in experiments.

Semantic Correspondence of Database Schema from Heterogeneous Databases using Self-Organizing Map

  • Dumlao, Menchita F.;Oh, Byung-Joo
    • Journal of IKEEE
    • /
    • v.12 no.4
    • /
    • pp.217-224
    • /
    • 2008
  • This paper provides a framework for semantic correspondence of heterogeneous databases using self- organizing map. It solves the problem of overlapping between different databases due to their different schemas. Clustering technique using self-organizing maps (SOM) is tested and evaluated to assess its performance when using different kinds of data. Preprocessing of database is performed prior to clustering using edit distance algorithm, principal component analysis (PCA), and normalization function to identify the features necessary for clustering.

  • PDF

Hierarchical Clustering of Gene Expression Data Based on Self Organizing Map (자기 조직화 지도에 기반한 유전자 발현 데이터의 계층적 군집화)

  • Park, Chang-Beom;Lee, Dong-Hwan;Lee, Seong-Whan
    • Proceedings of the Korean Society for Bioinformatics Conference
    • /
    • 2003.10a
    • /
    • pp.170-177
    • /
    • 2003
  • Gene expression data are the quantitative measurements of expression levels and ratios of numberous genes in different situations based on microarray image analysis results. The process to draw meaningful information related to genomic diseases and various biological activities from gene expression data is known as gene expression data analysis. In this paper, we present a hierarchical clustering method of gene expression data based on self organizing map which can analyze the clustering result of gene expression data more efficiently. Using our proposed method, we could eliminate the uncertainty of cluster boundary which is the inherited disadvantage of self organizing map and use the visualization function of hierarchical clustering. And, we could process massive data using fast processing speed of self organizing map and interpret the clustering result of self organizing map more efficiently and user-friendly. To verify the efficiency of our proposed algorithm, we performed tests with following 3 data sets, animal feature data set, yeast gene expression data and leukemia gene expression data set. The result demonstrated the feasibility and utility of the proposed clustering algorithm.

  • PDF

Clustering fMRI Time Series using Self-Organizing Map (자기 조직 신경망을 이용한 기능적 뇌영상 시계열의 군집화)

  • 임종윤;장병탁;이경민
    • Proceedings of the Korean Institute of Intelligent Systems Conference
    • /
    • 2001.12a
    • /
    • pp.251-254
    • /
    • 2001
  • 본 논문에서는 Self Organizing Map을 이용하여 fMRI data를 분석해 보았다. fMRl (functional Magnetic Resonance Imaging)는 인간의 뇌에 대한 비 침투적 연구 방법 중 최근에 각광받고 있는 것이다. Motor task를 수행하고 있는 피험자로부터 image data를 얻어내어 SOM을 적용하여 clustering한 결과 motor cortex 영역이 뚜렷하게 clustering 되었음을 알 수 있었다.

  • PDF