• 제목/요약/키워드: Selenomonas ruminantium

검색결과 13건 처리시간 0.02초

세균(細菌)의 당지질(糖脂質)에 관(關)한 연구(硏究) -제3보(第三報) Selenomonas ruminantium에 의(依)한 당지질(糖脂質)의 in vitro 생합성(生合成)- (Studies on Glycolipid in Bacteria -Part III. Biosynthesis of Glycolipid by Cell Free Extract of Selenomonas ruminantium-)

  • 김교창
    • Applied Biological Chemistry
    • /
    • 제17권2호
    • /
    • pp.138-142
    • /
    • 1974
  • 유산염배지(乳酸鹽培地)에서 배양(培養)한 Selenomonas ruminantium 균체(菌體)를 초음파처리후(超音波處理後) 추출(抽出)한 효소(酵素)와 cofactor로서 ATP, CoA, $Mg^{++}$, UTP를 사용(使用)하여 in vitro에서 당지질(糖脂質)을 생합성(生合成)하여 본 결과(結果)는 다음과 같다. 1. Selenomonas ruminantium의 효소(酵素)에 의(依)한 $^{14}C-glucosamine$과 tridecyl-Co A로 부터의 당지질(糖脂質)의 in vitro 생합성(生合成)은 ATP, $Mg^{++}$, UTP,에 의(依)하여 촉진(促進)되었다. 2. 효소추출액(酵素抽出液)을 원심분리(遠心分離)로 분획(分劃)하고 각분획(各分劃)의 glycolipid 합성능(合成能)을 본 결과(結果) 105,000의 supernatant에 6,000rpm supernatant의 약(約) 2배(倍)의 효소활성(酵素活性)을 나타내는 조효소(粗酵素)가 존재(存在)함을 알았다. 3. 효소반응(酵素反應)은 30분(分)일 때 대부분(大部分)이 진행(進行)되며 1시간(時間)에서 거의 완결(完結)됨을 알았다.

  • PDF

세균(細菌)의 당지질(糖脂質)에 관(關)한 연구(硏究) -제2보(第二報) Selenomonas ruminantium의 당지질(糖脂質)의 구조(構造)- (Studies on Glycolipids in Bacteria -Part II. On the Structure of Glycolipid of Selenomonas ruminantium-)

  • 김교창
    • Applied Biological Chemistry
    • /
    • 제17권2호
    • /
    • pp.125-137
    • /
    • 1974
  • Selenomonas ruminantium 균체(菌體)를 TCA로 가열(加熱) 분해(分解)한 후 chloroform : methanol (1 : 3)로 추출(抽出)한 당지질(糖脂質)을 분리(分離)하고 이 당지질(糖脂質)을 acetone가용부분(可溶部分) spot A화합물(化合物)과 acetone불용부분(不溶部分)에서 ether로 다시 가용부분(可溶部分)을 추출(抽出)한 spot B화합물(化合物)의 두 부분(部分)으로 분리(分離)하고 이 두 화합물(化合物)에 대(對)하여 각각(各各) 그 화학구조(化學構造)를 구명(究明)하며 당지질(糖脂質)의 구조(構造)를 추정(推定)한 바 다음과 같은 결과(結果)를 얻었다. 1. 두 화합물(化合物)의 적외선흡수분석결과(赤外線吸收分析結果) spot A는 amino당(糖)에 O-acyl 및 N-acyl지방산(脂肪酸)이 결합(結合)하였으며 spot B는 amino당(糖)에 O-acyl 및 N-acyl지방산(脂肪酸)이 결합(結合)하고 인(燐)을 함유(含有)하고 있음을 알았다. 2. 두 화합물(化合物)을 GLC에 의(依)하여 지방산조성(脂肪酸組成)을 조사(調査)한 바 spot A.B화합물중(化合物中)에 있는 O-acyl 및 N-acyl 지방산(脂肪酸)은 ${\beta}-OH\;C_{13:0}$지방산(脂肪酸)이 대부분(大部分)이 였는데 저급(低級)의 hydroxy지방산(脂肪酸) ${\beta}-OH\;C_{9:0}$도 특이적(特異的)으로 함유(含有)되여 있음을 알았다. 3. 두 화합물(化合物)을 hydrazine분해(分解)를 시킨 결과(結果)를 paper chromatography로 조사(調査)한 바 spot A화합물(化合物)은 glucosamine 이 2분자(分子) 결합(結合)하여 있는 chitobiose와 같은 Rf 치(値)를 나타냈음으로 2분자(分子)의 glucosamine이 결합(結合)됨을 확인(確認)하고 spot B 화합물(化合物)의 낮은 Rf치(値)는 glucosamine에 인(燐)이 결합(結合)되여 있음을 알았다. 4. spotA화합물(化合物)의 산분해물(酸分解物)을 다시 ninbydrine으로 산화분해(酸化分解) 시키면 arabinose만이 생기는 것으로 보아 glucosamine의 amino기(基)는 $C_2$의 위치(位置)에 결합(結合)하여 있음을 알았다. 5. N-acetyl화(化)한 spot A에 $NaBH_4$를 추리(處理)한 결과(結果) glucosamine의 전량(全量)이 반감(半減)하는 것으로 보아 2분자(分子)의 glucosamine이 결합(結合)되여 있는 것을 알 수 있고 Morgan-Elson반응(反應) 및 $NaIO_4$분해(分解)에 의(依)하여 2개(個)의 glucosamine은 1.6결합(結合)임을 확인(確認)하였다. 6. N-acetyl화(化)한 spot A.B화합물(化合物)에 ${\beta}-N-acetyl$ glucosarninidase를 반응(反應)시킨 결과(結果) spot A화합물(化合物)은 100% N-acetyl glucosamine으로 분해(分解)되고 spot B화합물(化合物)은 분해(分解)되지 않았으므로 spot A화합물(化合物)만이 ${\beta}$결합(結合)을 하고 있음을 알았다. 7. $^{32}P$함유(含有) spot B화합물(化合物)에 phosphodiesterase 및 phosphomonoesterase를 작용(作用)시킨 결과(結果) phosphodiesterase는 반응(反應)치 않고 phosphomonoesterase에 의(依)하여 100% $^{32}P$가 유리(遊離)되는 것으로 보아 glucosamine 2분자(分子)에 한계의 인(燐)이 monoester결합(結合)을 하고 있음을 알 수 있다. 8. spot A화합물(化合物)은 glucosaminiyl ${\beta}-1.6-glucosamine$의 결합(結合)을 하였고 O-acyl 및 N-acyl지방산(脂肪酸)이 결합(結合)되여 있으며 주지방산(主脂肪酸)은 ${\beta}-OH\;C_{13:0}$임을 알았다. 9. spot B화합물(化合物)도 glucosaminyl ${\beta}-1.6-glucosamine$의 결합(結合)을 하고 O-acyl 및 N-acyl지방산(脂肪酸)이 결합(結合)되여 있으며 주지방산(主脂肪酸)은 ${\beta}-OH\;C_{13:0}$이나 인(燐)이 monoester결합(結合)을 하고 있는 것이 spot A화합물(化合物)과 특이(特異)함을 알았다.

  • PDF

Effect of Triticale Dried Distillers Grains with Solubles on Ruminal Bacterial Populations as Revealed by Real Time Polymerase Chain Reaction

  • Wu, R.B.;Munns, K.;Li, J.Q.;John, S.J.;Wierenga, K.;Sharma, R.;Mcallister, T.A.
    • Asian-Australasian Journal of Animal Sciences
    • /
    • 제24권11호
    • /
    • pp.1552-1559
    • /
    • 2011
  • Real time PCR was used in this study to determine the effect of triticale dried distillers grains with solubles (TDDGS) as a replacement for grain or barley silage in finishing diets on the presence of six classical ruminal bacterial species (Succinivibrio dextrinosolvens, Selenomonas ruminantium, Streptococcus bovis, Megasphaera elsdenii, Prevotella ruminicola and Fibrobacter succinogenes) within the rumen contents of feedlot cattle. This study was divided into a step-wise adaptation experiment (112 days) that examined the effects of adaptation to diets containing increasing levels of TDDGS up to 30% (n = 4), a short-term experiment comparing animals (n = 16) fed control, 20%, 25% or 30% TDDGS diets over 28 days, and a rapid transition experiment (56 days) where animals (n = 4) were rapidly switched from a diet containing 30% TDDGS to a barley-based diet with no TDDGS. It was found that feeding TDDGS as replacement for barley grain (control vs. 20% TDDGS) decreased 16S rRNA copy numbers of starch-fermenting S. ruminantium and S. bovis (p<0.001 and p = 0.04, respectively), but did not alter 16S rRNA copy numbers of the other rumen bacteria. Furthermore, feeding TDDGS as a replacement barley silage (20% vs. 25% and 30% TDDGS) increased 16S rRNA copy numbers of S. ruminantium, M. elsdenii and F. succinogenes (p<0.001; p = 0.03 and p<0.001, respectively), but decreased (p<0.001) the 16S rRNA copy number of P. ruminicola. Upon removal of 30% TDDGS and return to the control diet, 16S rRNA copy numbers of S. ruminantium, M. elsdenii and F. succinogenes decreased (p = 0.01; p = 0.03 and p = 0.01, respectively), but S. dextrinosolvens and S. bovis increased (p = 0.04 and p = 0.009, respectively). The results suggest that replacement of TDDGS for grain reduces 16S rRNA copy numbers of starch-fermenting bacteria, whereas substitution for barley silage increases 16S rRNA copy numbers of bacteria involved in fibre digestion and the metabolism of lactic acid. This outcome supports the contention that the fibre in TDDGS is highly fermentable.

Effects of Surfactant Tween 80 on Forage Degradability and Microbial Growth on the In vitro Rumen Mixed and Pure Cultures

  • Goto, M.;Bae, H.;Lee, S.S.;Yahaya, M.S.;Karita, S.;Wanjae, K.;Cheng, K.J.
    • Asian-Australasian Journal of Animal Sciences
    • /
    • 제16권5호
    • /
    • pp.672-676
    • /
    • 2003
  • Effect of a surfactant Tween 80 on the bacterial growth in the rumen was examined on the in vitro pure cultures of Streptococcus bovis, Selenomonas ruminantium, Butyrivibrio fibrisolvens, Prevotella ruminicola, Megasphaera elsidenni, Fibrobacta succinogenes, Ruminanococcus albus and Ruminococcus flavefaciens. Dry matter degradability (DMD), concentrations and compositions of volatile fatty acids (VFA), and the most probable number (MPN) of cellulolytic bacteria and total number of bacteria in the presence of Tween 80 were also examined on the in vitro rumen mixed culture either with barley grain or orchardgrass hay. The growth of S. bovis, S. ruminantium, B. fibrisolvens, P. ruminicola, M. elsidenni and F. succinogenes were significantly higher (p<0.05) at over 0.05% concentrations of Tween 80 than those of the control cultures, while was not changed with R. albus and R. flavefaciens. With rumen mixed culture the DMD of barley grain and orchardgrass hay was significantly higher (p<0.05) at a 0.2% concentration of Tween 80 than the control, being reflected in the significantly higher (p<0.05) VFA production (mmol $g^{-1}$DDM) with orchardgrass hay. The higher (p<0.05) ratio of propionate to acetate at a 0.2% concentration of Tween 80 was also observed with orchardgrass hay, showing a similar trend with barley grain. No changes in the total bacterial number and MPN of cellulolytic bacteria were observed.

Microbial Evaluation of Fodder Tree Leaves as Ruminant Feed

  • Odenyo, A.A.;Osuji, P.O.;Negassa, D.
    • Asian-Australasian Journal of Animal Sciences
    • /
    • 제12권5호
    • /
    • pp.708-714
    • /
    • 1999
  • Fermentation of legume fodder tree leaves by rumen microorganisms was evaluated. The substrates were sun-dried, ground leaves. Gas and volatile fatty acid (VFAs) production were estimated. Using gas production as an index of fermentation at 12 h, the leaves tested ranked as follows; Chamaecytisus palmensis>Gliricidia sepium>Sebania sesban>Tephrosia bracteolate>Leucaena pallida>Vernonia amygdalina>Acacia sieberiana>Sesbania goetzei>Acacia angustissima. Using VFA production, the ranking was a follows; G. sepium>S. sesban>S. goetzei>L. pallida>C. palmensis/V. amygdalina>T. bracteolate> A. sieberiana>A. angustissima. Absolute gas or VFA production rates, were also used to rank the leaves. Extracts (70% acetone) of A. angustissima inhibited the growth of Ruminococcus albus 8, R. flavefaciens FD-1, Prevotella ruminicola D3ID and Streptococcus bovis JBI while the trowth of Selenomonas ruminantium D was depressed when 0.6 ml exracts were added. C. palmensis water extracts enhanced cellulose hydrolysis by R. flavefaciens FD-1. All extracts reduced celluloysis by R. albus 8. R. flavefaciens FD-1 hydrolyzed more (p<0.001) cellulose than R. albus 8.

Effect of Soybean Meal and Soluble Starch on Biogenic Amine Production and Microbial Diversity Using In vitro Rumen Fermentation

  • Jeong, Chang-Dae;Mamuad, Lovelia L.;Kim, Seon-Ho;Choi, Yeon Jae;Soriano, Alvin P.;Cho, Kwang Keun;Jeon, Che-Ok;Lee, Sung Sil;Lee, Sang-Suk
    • Asian-Australasian Journal of Animal Sciences
    • /
    • 제28권1호
    • /
    • pp.50-57
    • /
    • 2015
  • This study was conducted to investigate the effect of soybean meal (SM) and soluble starch (SS) on biogenic amine production and microbial diversity using in vitro ruminal fermentation. Treatments comprised of incubation of 2 g of mixture (expressed as 10 parts) containing different ratios of SM to SS as: 0:0, 10:0, 7:3, 5:5, 3:7, or 0:10. In vitro ruminal fermentation parameters were determined at 0, 12, 24, and 48 h of incubation while the biogenic amine and microbial diversity were determined at 48 h of incubation. Treatment with highest proportion of SM had higher (p<0.05) gas production than those with higher proportions of SS. Samples with higher proportion of SS resulted in lower pH than those with higher proportion of SM after 48 h of incubation. The largest change in $NH_3$-N concentration from 0 to 48 h was observed on all SM while the smallest was observed on exclusive SS. Similarly, exclusive SS had the lowest $NH_3$-N concentration among all groups after 24 h of incubation. Increasing methane ($CH_4$) concentrations were observed with time, and $CH_4$ concentrations were higher (p<0.05) with greater proportions of SM than SS. Balanced proportion of SM and SS had the highest (p<0.05) total volatile fatty acid (TVFA) while propionate was found highest in higher proportion of SS. Moreover, biogenic amine (BA) was higher (p<0.05) in samples containing greater proportions of SM. Histamines, amine index and total amines were highest in exclusive SM followed in sequence mixtures with increasing proportion of SS (and lowered proportion of SM) at 48 h of incubation. Nine dominant bands were identified by denaturing gradient gel electrophoresis (DGGE) and their identity ranged from 87% to 100% which were mostly isolated from rumen and feces. Bands R2 (uncultured bacterium clone RB-5E1) and R4 (uncultured rumen bacterium clone L7A_C10) bands were found in samples with higher proportions of SM while R3 (uncultured Firmicutes bacterium clone NI_52), R7 (Selenomonas sp. MCB2), R8 (Selenomonas ruminantium gene) and R9 (Selenomonas ruminantium strain LongY6) were found in samples with higher proportions of SS. Different feed ratios affect rumen fermentation in terms of pH, $NH_3$-N, $CH_4$, BA, volatile fatty acid and other metabolite concentrations and microbial diversity. Balanced protein and carbohydrate ratios are needed for rumen fermentation.

Effects of Nitrate Addition on Rumen Fermentation, Bacterial Biodiversity and Abundance

  • Zhao, Liping;Meng, Qingxiang;Ren, Liping;Liu, Wei;Zhang, Xinzhuang;Huo, Yunlong;Zhou, Zhenming
    • Asian-Australasian Journal of Animal Sciences
    • /
    • 제28권10호
    • /
    • pp.1433-1441
    • /
    • 2015
  • This study examined changes of rumen fermentation, ruminal bacteria biodiversity and abundance caused by nitrate addition with Ion Torrent sequencing and real-time polymerase chain reaction. Three rumen-fistulated steers were fed diets supplemented with 0%, 1%, and 2% nitrate (dry matter %) in succession. Nitrate supplementation linearly increased total volatile fatty acids and acetate concentration obviously (p = 0.02; p = 0.02; p<0.01), butyrate and isovalerate concentration numerically (p = 0.07). The alpha (p>0.05) and beta biodiversityof ruminal bacteria were not affected by nitrate. Nitrate increased typical efficient cellulolytic bacteria species (Ruminococcus flavefaciens, Ruminococcus ablus, and Fibrobacter succinogenes) (p<0.01; p = 0.06; p = 0.02). Ruminobactr, Sphaerochaeta, CF231, and BF311 genus were increased by 1% nitrate. Campylobacter fetus, Selenomonas ruminantium, and Mannheimia succiniciproducens were core nitrate reducing bacteria in steers and their abundance increased linearly along with nitrate addition level (p<0.01; p = 0.02; p = 0.04). Potential nitrate reducers in the rumen, Campylobacter genus and Cyanobacteria phyla were significantly increased by nitrate (p<0.01; p = 0.01).To the best of our knowledge, this was the first detailed view of changes in ruminal microbiota by nitrate. This finding would provide useful information on nitrate utilization and nitrate reducer exploration in the rumen.

Effects of Urea Level and Sodium DL-malate in Concentrate Containing High Cassava Chip on Ruminal Fermentation Efficiency, Microbial Protein Synthesis in Lactating Dairy Cows Raised under Tropical Condition

  • Khampa, S.;Wanapat, Metha;Wachirapakorn, C.;Nontaso, N.;Wattiaux, M.
    • Asian-Australasian Journal of Animal Sciences
    • /
    • 제19권6호
    • /
    • pp.837-844
    • /
    • 2006
  • Four, lactating dairy cows were randomly assigned according to a $2{\times}2$ Factorial arrangement in a $4{\times}4$ Latin square design to study supplementation of urea level (U) at 2 and 4% and sodium dl-malate (M) at 10 and 20 g/hd/d in concentrate. The treatments were as follows U2M10, U2M20, U4M10 and U4M20, respectively. The cows were offered the treatment concentrate at a ratio to milk yield at 1:2.5 and urea-treated rice straw was fed ad libitum. The results have revealed that rumen fermentation and blood metabolites were similar for all treatments. The populations of protozoa and fungal zoospores were significantly different as affected by urea level and sodium dl-malate. In addition, the viable bacteria were similar for amylolytic and proteolytic bacteria. Cellulolytic bacteria were significantly affected by level of sodium dl-malate especially Selenomonas ruminantium and Megasphaera elsdenii while Butyrivibrio fibrisolvens was significantly affected by level of urea supplementation. In conclusion, the combined use of concentrate containing high level of cassava chip at 75% DM with urea at 4% in concentrate and sodium dl-malate at 20 g/hd/d with UTS as a roughage could improv rumen ecology and microbial protein synthesis efficiency in lactating dairy cows.

Phylogenetic Analysis of 16S rDNA Sequences Manifest Rumen Bacterial Diversity in Gayals (Bos frontalis) Fed Fresh Bamboo Leaves and Twigs (Sinarumdinaria)

  • Deng, Weidong;Wanapat, Metha;Ma, Songcheng;Chen, Jing;Xi, Dongmei;He, Tianbao;Yang, Zhifang;Mao, Huaming
    • Asian-Australasian Journal of Animal Sciences
    • /
    • 제20권7호
    • /
    • pp.1057-1066
    • /
    • 2007
  • Six male Gayal (Bos frontalis), approximately two years of age and with a mean live weight of $203{\pm}17$ kg ($mean{\pm}standard\;deviation$), were housed indoors in metabolism cages and fed bamboo (Sinarundinaria) leaves and twigs. After an adjustment period of 24 days of feeding the diet, samples of rumen liquor were obtained for analyses of bacteria in the liquor. The diversity of rumen bacteria was investigated by constructing a 16S rDNA clone library. A total of 147 clones, comprising nearly full length sequences (with a mean length of 1.5 kb) were sequenced and submitted to an on-line similarity search and phylogenetic analysis. Using the criterion of 97% or greater similarity with the sequences of known bacteria, 17 clones were identified as Ruminococcus albus, Butyrivibrio fibrosolvens, Quinella ovalis, Clostridium symbiosium, Succiniclasticum ruminis, Selenomonas ruminantium and Allisonella histaminiformans, respectively. A further 22 clones shared similarity ranging from 90-97% with known bacteria but the similarity in sequences for the remaining 109 clones was less than 90% of those of known bacteria. Using a phylogenetic analysis it was found that the majority of the clones identified (57.1%) were located in the low G+C subdivision, with most of the remainder (42.2% of clones) located in the Cytophage-Flexibacter-Bacteroides (CFB) phylum and one clone (0.7%) was identified as a Spirochaete. It was apparent that Gayal have a large and diverse range of bacteria in the rumen liquor which differ from those of cattle and other ruminants. This may explain the greater live weights of Gayal, compared to cattle, grazing in the harsh natural environments in which Gayal are located naturally.