• Title/Summary/Keyword: Selectivity Catalytic Oxidation

Search Result 56, Processing Time 0.022 seconds

Homogeneous and Catalytic Methanol Synthesis by Partial Oxidation of Methane (메탄의 균일 및 접촉부분산화에 의한 메탄올 합성)

  • Hahm, Hyun-Sik;Choi, Woo-Jin;Hwang, Jae-Young;Ahn, Sung-Hwan;Kim, Myung-Soo;Park, Hong-Soo
    • Journal of the Korean Applied Science and Technology
    • /
    • v.22 no.1
    • /
    • pp.56-61
    • /
    • 2005
  • Methanol was synthesized by homogeneous and catalytic reactions of partial oxidation of methane. The effect of pressure, temperature and oxygen concentration on methanol synthesis was investigated. The catalyst used was Bi-Cs-Mg-Cu-Mo mixed oxide. The partial oxidation reaction was carried out in a fixed bed reactor at 20${\sim}$46 bar and $450{\sim}480^{\circ}C$ and oxygen concentration of 5.3${\sim}$7.7mol%. The results were compared with results of homogeneous reaction performed at the same conditions. Methane conversions of the homogeneous and catalytic reactions increased with temperature. Methanol selectivity of the homogeneous reaction decreased with increasing temperature. However, the methanol selectivity of catalytic reaction increased with temperature. For both homogeneous and catalytic reactions, the methane conversions were around 5%. This may be due to the low oxygen concentration. Methanol selectivity of the catalytic reaction was higher than that of homogeneous one.

High Selective Oxidation of Alcohols Based on Trivalent Ion (Cr3+ and Co3+) Complexes Anchored on MCM-41 as Heterogeneous Catalysts

  • Shojaei, Abdollah Fallah;Rafie, Mahboubeh Delavar;Loghmani, Mohammad Hassan
    • Bulletin of the Korean Chemical Society
    • /
    • v.33 no.8
    • /
    • pp.2748-2752
    • /
    • 2012
  • Cr(III) and Co(III) complexes with acetylacetonate were anchored onto a mesoporous MCM-41 through Schiff condensation. The materials were characterized by XRD, FT-IR, BET, CHN and ICP techniques. Elemental analysis of samples revealed that one C=N bond was formed through Schiff condensation on MCM-41 surface. The catalysts were tested for the alcohol oxidations using t-butyl hydroperoxide (TBHP) and $H_2O_2$ as oxidant. The catalytic experiments were carried out at both room temperature and reflux condition. Various solvents such as dichloromethane, acetonitrile and water were examined in the oxidation of alcohols. Among the different solvents, catalytic activity is found more in acetonitrile. Further, the catalysts were recycled three times in the oxidation of alcohols and no major change in the conversion and selectivity is observed, which shows that the immobilized metal-acetylacetonate complexes are stable under the present reaction conditions.

Membrane reactors in gas phase oxidations

  • Bottino, A.;Capannelli, G.;Comite, A.;Felice, R.Di
    • Proceedings of the Membrane Society of Korea Conference
    • /
    • 2003.07a
    • /
    • pp.33-36
    • /
    • 2003
  • This research was aimed at developing new catalytic membrane reactors to be used for : i) partial oxidation of toluene (to benzaldehyde and benzoic acid) ii) oxidative dehydrogenation of propane iii) complete oxidation of propane and toluene. The reactor is particularly useful for the optimisation and the industrial development of heterogeneous catalytic processes, particularly for those processes where it is necessary to control the reactants stoichiometry in the reaction zone. This control limits consecutive reactions, thus obtaining high selectivity with industrially interesting conversions. This presentation will concentrate on the partial oxidation of toluene.

  • PDF

Selective Oxidation of Cyclohexane at Low Temperature by Fe-Pd Bicatalytic Systems: $FeCl_2$-Pd/alumina System and Pd/$Fe_2O_3$ System

  • 전기원;Lingaiah Nakka;김상범;이규완
    • Bulletin of the Korean Chemical Society
    • /
    • v.18 no.12
    • /
    • pp.1269-1273
    • /
    • 1997
  • The system which employs iron, palladium, molecular oxygen and hydrogen as a model mono-oxygenase, has been investigated to develop a new method for selective cyclohexane oxidation uner mild conditions. This system provides much higher yield and selectivity for the formation of cyclohexanol and cyclohexanone compared to that of the existing industrial method. When the catalytic system, FeCl2-Pd/alumina, was employed, the oxidation system required acetone as a solvent to be efficient and acidifying the solvent by a little addition of acetic acid or HCl made the system more efficient. The Pd catalyst was recyclable without a significant deactivation but the recycling of ferrous chloride showed the decrease in the activity. On the other hand, the heterogeneous catalytic system, Pd/Fe2O3 could be recovered easily and reused after drying treatment.

The Selective Oxidation of CO in Hydrogen Rich Stream over Alumina Supported Cu-Ce Catalyst (알루미나에 담지된 Cu-Ce 촉매상에서의 개질수소가스에 포함된 CO의 선택적 산화 반응에 관한 연구)

  • Park, J.W.;Jeong, J.H.;Yoon, W.R.;Lee, Y.W.
    • Transactions of the Korean hydrogen and new energy society
    • /
    • v.14 no.2
    • /
    • pp.155-170
    • /
    • 2003
  • $Cu-Ce/{\gamma}-Al_2O_3$ based catalysts were prepared and tested for selective oxidation of CO in a $H_2$-rich stream(1% CO, 1% $O_2$, 60% $H_2$, $N_2$ as balance). The effects of Cu loading and weight ratio(=Cu/(Cu+Ce)) upon both activity and selectivity were investigated upon the change in temperatures, It was also examined how the activity and selectivity of catalysts were varied with the presence of $CO_2$ and $H_2O$ in the reactant feed. Among the various Cu-Ce catalysts with different catalytic metal composition, Cu-Ce(4 : 16 wf%) /${\gamma}-Al_2O_3$ catalyst showed the highest activity(>$T_{99}$) and selectivities(50-80%) under wide range of temperatures($175-220^{\circ}C$). However, in the Cu-Ce(4 : 16 wt%)/ ${\gamma}-Al_2O_3$, the presence of $CO_2$ and $H_2O$ in the reactant feed decreased the activity and the maximum activity(>$T_{99}$) in terms of reaction temperature moved by about $25^{\circ}C$ toward higher temperature, the $T_{>99}$ window was seen between $210-230^{\circ}C$ (selectivity 50-75%). From $CO_2-/H_2O-TPD$, it can be concluded that the main cause for the decrease in catalytic activity may be attributed to the blockage of the active sites by competitive adsorption of water vapor and $CO_2$ with the reactant at low temperatures.

Catalytic combustion type hydrogen micro gas sensor using thin film heater and nano crystalline SnO2 (나노 결정 SnO2와 백금 박막히터를 이용한 접촉연소식 마이크로 가스센서의 감응특성 연구)

  • Han, Sang-Do;Hong, Dae-Ung;Han, Chi-Hwan;Chun, Il-Soo
    • Journal of Sensor Science and Technology
    • /
    • v.17 no.3
    • /
    • pp.178-182
    • /
    • 2008
  • Planar type micro catalytic combustible gas sensor was developed by using nano crystalline $SnO_2$ Pt thin film as micro heater was deposited by thermal evaporation method on the alumina substrate. The thickness of the Pt heater was around 160 nm. The sensor showed high reliability with prominent selectivity against various gases(Co, $C_3H_8,\;CH_4$) at low operating temperature($156^{\circ}C$). The sensor with nano crystalline $SnO_2$ showed higher sensitivity than that without nano crystalline $SnO_2$. This can be explained by more active adsorption and oxidation of hydrogen by nano crystalline $SnO_2$ particles. The present planar-type catalytic combustible hydrogen sensor with nano crystalline $SnO_2$ is a good candidate for detection of hydrogen leaks.

Preferential CO Oxidation over Ce-Promoted Pt/γ-Al2O3 Catalyst (Ce가 첨가된 Pt/γ-Al2O3 촉매의 선택적 CO 산화반응 특성)

  • Kim, Kihyeok;Koo, Keeyoung;Jung, Unho;Yoon, Wanglai
    • Transactions of the Korean hydrogen and new energy society
    • /
    • v.23 no.6
    • /
    • pp.640-646
    • /
    • 2012
  • The effect of Ce promotion over 1wt% $Pt/{\gamma}-Al_2O_3$ catalysts on the CO conversion and $CO_2$ selectivity was investigated in preferential CO oxidation (PrOx) to reduce the CO concentration less than 10 ppm in excess $H_2$ stream for polymer electrolyte membrane fuel cell (PEMFC). Ce-promoted 1wt% $Pt/{\gamma}-Al_2O_3$ catalysts were prepared by incipient wetness impregnation method and the loading amount of Pt was fixed at 1wt%. The content of Ce promoter which has excellent oxygen storage and transfer capability due to the redox property was adjusted from 0 to 1.5wt%. Ce-promoted 1wt% $Pt/{\gamma}-Al_2O_3$ catalysts exhibit high CO conversion and $CO_2$ selectivity at low temperatures below $150^{\circ}C$ due to the improvement of reducibility of surface PtOx species compared with the 1wt% $Pt/{\gamma}-Al_2O_3$ catalyst without Ce addition. When Ce content was more than 1wt%, the catalytic activity was decreased at over $160^{\circ}C$ in PrOx because of competitive $H_2$ oxidation. As a result, 0.5wt% Ce is optimal content not only to achieve high catalytic activity and good stability at low temperatures below $150^{\circ}C$ in the presence of $CO_2$ and $H_2O$ but also to minimize the $H_2$ oxidation at high temperatures.

Catalytic Oxidation of Vinyl Chloride on Chromium Oxide Catalysts (크롬 산화물 촉매를 이용한 Vinyl Chloride의 산화 분해반응)

  • Lee, Hae-Wan;Kim, Young Chai;Moon, Sei-Ki
    • Applied Chemistry for Engineering
    • /
    • v.10 no.1
    • /
    • pp.58-66
    • /
    • 1999
  • The catalytic oxidation of vinyl chloride was investigated over $CrO_x$ impregnated on $Al_2O_3$ at temperature between 200 and $400^{\circ}C$. The major carbonaceous products were CO and $CO_2$, and the selectivity of $CO_2$ was gradually increased with increasing reaction temperature, while that of CO was dropped consequently. This suggests that CO is the first product which is further oxidized to $CO_2$ in the oxidation of vinyl chloride over $CrO_x/Al_2O_3$. The addition of HCl in the feed didn't affect the conversion of vinyl chloride, but the selectivity of $CO_2$ decreased by adding HCl. It implies that HCl inhibits, the complete oxidation of vinyl chloride to $CO_2$. When oxidizing vinyl chloride in dry air, significant amounts of $Cl_2$ were observed, while no $Cl_2$ was detected in the humid condition. The activities of several catalysts including various precious metals and other transition metal oxides were measured, it was found that the catalytic activity of 12% $CrO_x/Al_2O_3$ was higher than other catalysts except 1% $Pt/Al_2O_3$. The reaction rate of 12% $CrO_x/Al_2O_3$ was 1.2 times lower than that of 1% Pt/alumina, but it was 3 to 8 times more active than other catalysts for vinyl chloride oxidation at $275^{\circ}C$.

  • PDF

Inhibition Effects of Toxic Solvent Mixture in Catalytic Oxidation Process (유독성 유기용매의 촉매산화공정에서 혼합조성에 따른 간섭효과)

  • 이승범;김원일;홍인권;김형진
    • Journal of environmental and Sanitary engineering
    • /
    • v.16 no.3
    • /
    • pp.72-79
    • /
    • 2001
  • The selective catalytic oxidation of toxic aromatic solvents (benzene, toluene, ethylbenzene, and styrene) and their mixtures were studied on a $Pt/{\;}{\gamma}-Al_2O_3$ catalyst at temperature ranging from $160~350^{\circ}C$. The deep conversion of aromatic solvents was increased as the inlet concentration was decreased and the reaction temperature was increased. The reactivity increases in order benzene > toluene > ethylbenzene > styrene. In mixture, remarkable effects on reaction rate and selectivity have been evidence ; the strongest inhibition effect is shown by styrene and increase in a reverse order with respect to that of reactivity. The inhibition effect was increased in order styrene > ethylbenzene > toluzene > benzene. This trend is due to the competition adsorption between the two or three reactants on the oxidized catalyst. Also, the deep conversion change of benzene was a small in tertiary mixtures(including of benzene and styrene) comparing with conversion characteristics of binary mixture with styrene. This result was due to small concentration of styrene. which had very strong inhibition effect.

  • PDF

Catalytic Properties of Ti-HMS with High Titanium Loadings

  • Jang, S.H.;Kim, M.J.;Ko, J.R.;Ahn, W.S.
    • Bulletin of the Korean Chemical Society
    • /
    • v.26 no.8
    • /
    • pp.1214-1218
    • /
    • 2005
  • Ti-HMS samples in which titanium species exist in various forms of isolated tetrahedral state, finely dispersed $TiO_2$ cluster, and some in extra-framework anatase phase were prepared via a direct synthesis route using dodecylamine (DDS) as a structure directing agent by systematically varying the titanium loadings between 2 and 50 mol% Ti/(Ti+Si) in substrate composition. Physicochemical properties of the materials were evaluated using XRD, SEM/TEM, N2 adsorption, UV-vis and XANES spectroscopies. Catalytic properties of Ti-HMS in cyclohexene and 2,6-di-tert-butyl phenol (2,6-DTBP) oxidation using aqueous $H_2O_2$, and vapor phase photocatalytic degradation of acetaldehyde were evaluated. High $H_2O_2$ selectivity was obtained in cyclohexene oxidation, and cyclohexene conversion was found primarily dependent on the amount of tetrahedrally coordinated Ti sites. For bulky 2,6-DTBP oxidation and photocatalytic oxidation of acetaldehyde, on the other hand, conversions were found dependent on the total amount of Ti sites and maintaining an uniform mesoporous structure in the catalysts was not critical for efficient catalysis.