• Title/Summary/Keyword: Selective serotonin receptor drugs

Search Result 6, Processing Time 0.022 seconds

Serotonin in Psychiatry (세로토닌과 정신의학)

  • Yang, Byung-Hwan
    • Korean Journal of Biological Psychiatry
    • /
    • v.4 no.2
    • /
    • pp.155-161
    • /
    • 1997
  • Serotonin has been implicated in the etiology of many disease states and may be particularly important mental illness, such as depression, anxiety, schizophrenia, sleep disorders, suicide, eating disorders, obsessive compulsive disorders, migraine and others. Many currently used treatments of these disorders are thought to act by modulating serotonergic function. The identification of many serotonin subtypes, most of which have been shown to have functional activity and differential distribution, has stimulated considerable effort into synthesizing selective ligands(drugs) to help understand their significance. This should understand the role of serotonin in mental disorders and these new drugs can be studied alone and in combination with other treatments in order to clarify the parameters of drug use for the clinical effect.

  • PDF

Neuroimmunological Mechanism of Pruritus in Atopic Dermatitis Focused on the Role of Serotonin

  • Kim, Kwangmi
    • Biomolecules & Therapeutics
    • /
    • v.20 no.6
    • /
    • pp.506-512
    • /
    • 2012
  • Although pruritus is the critical symptom of atopic dermatitis that profoundly affect the patients' quality of life, controlling and management of prurirtus still remains as unmet needs mainly due to the distinctive multifactorial pathogenesis of pruritus in atopic dermatitis. Based on the distinct feature of atopic dermatitis that psychological state of patients substantially influence on the intensity of pruritus, various psychotropic drugs have been used in clinic to relieve pruritus of atopic dermatitis patients. Only several psychotropic drugs were reported to show real antipruritic effects in atopic dermatitis patients including naltrexone, doxepin, trimipramine, bupropion, tandospirone, paroxetine and fluvoxamine. However, the precise mechanisms of antipruritic effect of these psychotropic drugs are still unclear. In human skin, serotonin receptors and serotonin transporter protein are expressed on skin cells such as keratinocytes, melanocytes, dermal fibroblasts, mast cells, T cells, natural killer cells, langerhans cells, and sensory nerve endings. It is noteworthy that serotonergic drugs, as well as serotonin itself, showed immune-modulating effect. Fenfluramine, fluoxetine and 2, 5-dimethoxy-4-iodoamphetamine significantly decreased lymphocyte proliferation. It is still questionable whether these serotonergic drugs exert the immunosuppressive effects via serotonin receptor or serotonin transporter. All these clinical and experimental reports suggest the possibility that antipruritic effects of selective serotonin reuptake inhibitors in atopic dermatitis patients might be at least partly due to their suppressive effect on T cells. Further studies should be conducted to elucidate the precise mechanism of neuroimmunological interaction in pruritus of atopic dermatitis.

Effects of Cardiovascularly Acting Neuroendocrine Agents on Heart Beatings of Pacific Oyster, Crassostrea gigas (순환기 기능 조절기능을 가진 신경내분비계 작용물질이 참굴의 심장 수축기능에 미치는 영향)

  • Park, Kwan-Ha
    • The Korean Journal of Malacology
    • /
    • v.25 no.1
    • /
    • pp.15-22
    • /
    • 2009
  • Because it is known that bivalve hearts contain various modulatory systems activated by neuroendocrine substances, it was examined whether different classes of endogenous and synthetic drugs of neuroendocrinological importance can influence cardiac functions of the Pacific oyster Crassostrea gigas. Cholinergically active agents acetylcholine and carbachol increased heart rates while diminishing cardiac contractility. Adrenergically active substances norepinephrine (NE) and epinephrine (Epi) also induced heart rate increase and contractility decrease. An $\alpha_1$-adrenergic receptor-selective agonist phenyephrine (PE) failed to modulate either parameter. The Epi-induced heart rate increase and contractile depression were both blocked significantly by non-selective $\beta_1/\beta_2$-adrenergic antagonist propranolol. A $\beta_1$-selective antagonist atenolol prevented Epi-induced heart rate decrease but not the contractile depression, suggesting possible $\beta_2$ receptors for Epi-induced contractile depression. The three autacoids examined exerted discrete responses: histamine increased heart rate and depressed contraction; $\gamma$-amino-butyric acid increased both parameters; serotonin failed to change either parameter. The 5 piscine anesthetic agents examined, MS-222, benzocaine, quinaldine, urethane, pantocaine and pentobarbital, all failed to influence the cardiac function of oysters. Collectively, activities of neuroendocrinologically acting agents in mammals showed unexpected and distinct activities from those in mammalian cardiovascular systems. These results obtained from substances of different physiological functions can serve as a basis for understanding neuroendocrine control of the heart function in Pacific oyster.

  • PDF

Etifoxine for Pain Patients with Anxiety

  • Choi, Yun Mi;Kim, Kyung Hoon
    • The Korean Journal of Pain
    • /
    • v.28 no.1
    • /
    • pp.4-10
    • /
    • 2015
  • Etifoxine (etafenoxine, $Stresam^{(R)}$) is a non-benzodiazepine anxiolytic with an anticonvulsant effect. It was developed in the 1960s for anxiety disorders and is currently being studied for its ability to promote peripheral nerve healing and to treat chemotherapy-induced pain. In addition to being mediated by $GABA_A{\alpha}2$ receptors like benzodiazepines, etifoxine appears to produce anxiolytic effects directly by binding to ${\beta}2$ or ${\beta}3$ subunits of the $GABA_A$ receptor complex. It also modulates $GABA_A$ receptors indirectly via stimulation of neurosteroid production after etifoxine binds to the 18 kDa translocator protein (TSPO) of the outer mitochondrial membrane in the central and peripheral nervous systems, previously known as the peripheral benzodiazepine receptor (PBR). Therefore, the effects of etifoxine are not completely reversed by the benzodiazepine antagonist flumazenil. Etifoxine is used for various emotional and bodily reactions followed by anxiety. It is contraindicated in situations such as shock, severely impaired liver or kidney function, and severe respiratory failure. The average dosage is 150 mg per day for no more than 12 weeks. The most common adverse effect is drowsiness at the initial stage. It does not usually cause any withdrawal syndromes. In conclusion, etifoxine shows less adverse effects of anterograde amnesia, sedation, impaired psychomotor performance, and withdrawal syndromes than those of benzodiazepines. It potentiates $GABA_A$ receptor-function by a direct allosteric effect and by an indirect mechanism involving the activation of TSPO. It seems promising that non-benzodiazepine anxiolytics including etifoxine will replenish shortcomings of benzodiazepines and selective serotonin reuptake inhibitors according to animated studies related to TSPO.

Drug Interactions between Cardiovascular Agents and Psychotropic Drugs (심혈관질환약물과 향정신성약물의 약물상호작용)

  • Park, Joo-Eon;Jung, Kyung-Hee
    • Korean Journal of Psychosomatic Medicine
    • /
    • v.19 no.2
    • /
    • pp.57-65
    • /
    • 2011
  • There are numerous drug interactions related to many psychotropic and cardiovascular medications. Firstly, the principles in predicting drug interactions are discussed. Cytochrome P (CYP) 450 plays a significant role in the metabolism of these drugs that are substrates, inhibitors, or inducers of CYP450 enzymes. The two most significant enzymes are CYP2D6 and CYP3A4. The ability of psychotropic drugs to act as inhibitors for the enzymes may lead to altered efficacy or toxicity of co-administered cardiovascular agents as a substrate for the enzymes. The following is also a review of the known interactions between many commonly prescribed cardiovascular agents and psychotropic drugs. Most beta blockers are metabolized by CYP2D6, which may lead to drug toxicity when they use in combination with potent CYP2D6 inhibitors including bupropion, chlorpromazine, haloperidol, selective serotonin reuptake inhibitors, and quinidine. Concomitant administration of lithium with angiotensin converting enzyme inhibitors, angiotensin receptor blockers, and diuretics may increase serum lithium concentrations and toxicity. Calcium channel blockers and cholesterol lowering agents are subject to interactions with potent inhibitors of CYP3A4, such as amiodarone, diltiazem, fluvoxamine, nefazodone, and verapamil. Prescribing antiarrhythmic drugs in conjunction with medications are known to prolong QT interval and/or inhibitors on a relevant CYP450 enzyme is generally not recommended, or needs watchful monitoring. Digoxin and warfarin also have warrant careful monitoring if co-administered with psychotropic drugs.

  • PDF

N-(4-[$^{18}F$]Fluoromethylbenzyl)spiperone : A Selective Radiotracer for In Vivo Studies of Dopamine $D_2$ Receptors (N-(4-[$^{18}F$Fluoromethylbenzyl)spiperone : 유력한 도파민 $D_2$ 수용체 선택성 방사성리간드)

  • Kim, Sang-Eun;Choe, Yearn-Seong;Chi, Dae-Yoon;Lee, Kyung-Han;Choi, Yong;Kim, Byung-Tae
    • The Korean Journal of Nuclear Medicine
    • /
    • v.31 no.4
    • /
    • pp.421-426
    • /
    • 1997
  • We evaluated the in vivo kinetics, distribution, and pharmacology of N-(4-[$^{18}F$]fluoromethylbenzyl)spiperone ([$^{18}F$]FMBS), a newly developed derivative of spiperone, as a potentially more selective radiotracer for the dopamine (DA) $D_2$ receptors. Mice received 1.9-3.7 MBq (1.8-3.6 nmol/kg) of [$^{18}F$]FMBS by tail vein injection. The time course and regional distribution of the tracer in brain were assessed. Blocking studies were carried out by intravenously preinjecting DA $D_2$ receptor blockers (spiperone, butaclamol) as well as drugs with high affinity for DA $D_1$ (SCH 23390), DA transporter (GBR 12909), and serotonin $S_2$ ($5-HT_2$) (ketanserin) sites. After injection of the tracer, the radioactivity in striatum increased steadily over time, resulting in a striatal-to-cerebellar ratio of 4.8 at 120 min postinjection. By contrast, the radioactivity in cerebellum, frontal cortex, and remaining cortex washed out rapidly. Preinjection of unlabeled FMBS (1 mg/kg) and spiperone (1 mg/kg) reduced [$^{18}F$]FMBS striatal-to-cerebellar ratio by 41% and 80%, respectively. (+)-Butaclamol (1 mg/kg) blocked 80% of the striatal [$^{18}F$]FMBS binding, while (-)-butaclamol (1 mg/kg) did not. Preinjection of SCH 23390 (1 mg/kg) and GBR 12909 (5 mg/kg) had no significant effect on [$^{18}F$]FMBS binding. Ketanserin (1 mg/kg), a ligand for the $5-HT_2$ receptors, did not cause significant inhibition either in striatum, in frontal cortex, or the remaining cortex. The results demonstrate that [$^{18}F$]FMBS labels DA $D_2$ receptors selectively in vivo in the mouse brain. It may hold promise as a selective radiotracer for studying DA $D_2$ receptors in vivo by PET.

  • PDF