• Title/Summary/Keyword: Selective separation

Search Result 280, Processing Time 0.024 seconds

Separation of Aqueous Chlorinated Hydrocarbons by Pervaporation (투과증발법을 이용한 염소계 화합물 수용액의 분리)

  • 이영무;유승민;오부근
    • Membrane Journal
    • /
    • v.6 no.1
    • /
    • pp.53-57
    • /
    • 1996
  • Polysulfone ultrafiltration membrane was coated with polyisobutylene(PIB) as a top layer to separate chlorinated hydrocarbons. The solubility parameter differences between PIB, water and perchloroethylene(PCE) or trichloroethylene(TCE) show that the solubility parameter difference between PIB and TCE or PCE is similar while that between PIB and water is far less, indicating that PIB is selective to chlorinated hydrocarbons. The pervaporation separation of TCE and PCE shows that TCE is concentrated more than four times, by PIB composite membrane, while PCE is concentrated more than thirteen times. This result shows that PIB composite membrane in this study seems to be an appropriate selective layer for the separation of TCE and PCE from aqueous organic solutions.

  • PDF

A Review Based on Ion Separation by Ion Exchange Membrane (이온교환막을 통한 이온분리에 대한 총설)

  • Assel, Sarsenbek;Patel, Rajkumar
    • Membrane Journal
    • /
    • v.32 no.4
    • /
    • pp.209-217
    • /
    • 2022
  • Ion exchange membrane (IEM) is an important class of membrane applied in batteries, fuel cells, chloride-alkali processes, etc to separate various mono and multivalent ions. The membrane process is based on the electrically driven force, green separation method, which is an emerging area in desalination of seawater and water treatment. Electrodialysis (ED) is a technique in which cations and anions move selectively along the IEM. Anion exchange membrane (AEM) is one of the important components of the ED process which is critical to enhancing the process efficiency. The introduction of cross-linking in the IEM improves the ion-selective separation performance due to the reduction of free volume. During the desalination of seawater by reverse osmosis (RO) process, there is a lot of dissolved salt present in the concentrate of RO. So, the ED process consisting of a monovalent cation-selective membrane reduces fouling and improves membrane flux. This review is divided into three sections such as electrodialysis (ED), anion exchange membrane (AEM), and cation exchange membrane (CEM).

Electrosorption and Separation of $Co^{2+}$ and $Sr^{2+}$ Ions from Decontaminated Liquid Wastes

  • Kim, Jun-Soo;Jung, Chong-Hun;Oh, Won-Zin;Ryu, Seung-Kon
    • Carbon letters
    • /
    • v.3 no.1
    • /
    • pp.6-12
    • /
    • 2002
  • A study on the electrosorption of $Co^{2+}$ and $Sr^{2+}$ ions onto a porous activated carbon fiber (ACF) was performed to treat radioactive liquid wastes resulting from chemical or electrochemical decontamination and to regenerate the spent carbon electrode. The result of batch electrosorption experiments showed that applied negative potential increased adsorption kinetics and capacity in comparison with open-circuit potential (OCP) adsorption for $Co^{2+}$ and $Sr^{2+}$ ions. The adsorbed $Co^{2+}$ and $Sr^{2+}$ ions are released from the carbon fiber by applying a positive potential on the electrode, showing the reversibility of the sorption process. The possibility of application of the electrosorption technique to the separation of radionuclides was examined. The result of a selective removal experiments of a single component from a mixed solution showed that perfect separation of $Co^{2+}$ and $Sr^{2+}$ ions was possible by the electrosorption process.

  • PDF

Separation Performance of a Low-pressure Hydrocyclone for Suspended Solids in a Recirculating Aquaculture System

  • Lee, Jin-Hwan
    • Fisheries and Aquatic Sciences
    • /
    • v.13 no.2
    • /
    • pp.150-156
    • /
    • 2010
  • The separation performance of a low-pressure hydrocyclone (LPH) was evaluated for suspended-solids removal in a recirculating aquaculture system (RAS). The dimensions of the LPH were 335 mm cylinder diameter, 575 mm cylinder height, 60 mm overflow diameter, 50 mm underflow diameter, and $68^{\circ}$ cone angle. The inflow rate varied (400, 600, 800, and 1,000 mL $s^{-1}$) with 25%, 25%, 20%, and 10% of bypass ($R_f$), respectively. The maximum total separation efficiency (Et) and reduced separation efficiency (E't) for suspended solids from the effluent of the second settlement tank (before biofiltration) were 58.9% and 45.2%, respectively, at an inflow rate of 600 mL $s^{-1}$ and 25% of $R_f$. The maximum Et and E't for suspended solids from the water supply channel (after biofiltration) were 24.4% and 16%, respectively, at an inflow rate of 1,000 mL $s^{-1}$ and 10% of $R_f$. The maximum grade efficiency (Ei) was 51.6% for a 300 ${\mu}m$ particle size at an inflow rate of 600 mL $s^{-1}$ with 23% of $R_f$. The maximum reduced grade efficiency (E'i) was 37.6% for a 300 ${\mu}m$ particle size at an inflow rate of 1,000 mL $s^{-1}$ with 11% of $R_f$. The results indicate that the separation performance of the LPH for suspended solids removal was size selective and that maximum removal occurred at particle sizes ranging from 300 to 500 ${\mu}m$.

Study on Separation Characteristics of Flue Gas Using Hydroquinone Clathrate Compounds (하이드로퀴논 크러스레이트를 이용한 배가스 분리 특성 연구)

  • Lee, Jong-Won;Choi, Ki-Jong
    • Korean Chemical Engineering Research
    • /
    • v.49 no.6
    • /
    • pp.865-868
    • /
    • 2011
  • An organic substance, hydroquinone is used to form clathrate compounds in order to identify separation characteristics of carbon dioxide in flue gas. Formed samples were analyzed by means of the solid-state $^{13}C$ nuclear magnetic resonance (NMR) and Raman spectroscopic methods to examine enclthration behaviors of guest species. In addition, elemnetal analysis was also performed in order to evaluate separation efficiency of $CO_2$ in a quantitative way. Based on the experimental results obtained, $CO_2$ molecules are found to be captured into the clathrate compound more readily than $N_2$ molecules. Moreover, because such preferential enclathration is even more significant at low pressure conditions, $CO_2$ separation/recovery from flue gas can be achieved with minimizing additional energy cost for the technique. Experimental results obtained in this study can provide useful information on separation techniques of flue gas or selective separation of gas mixtures in the future.

Selective Leaching Process of Precious Metals (Au, Ag, etc.) from Waste Printed Circuit Boards (PCBs) (廢 PCBs부터 귀금속(Au, Ag 등)의 선택적 침출공정)

  • 오치정;이성오;국남표;김주환;김명준
    • Resources Recycling
    • /
    • v.10 no.5
    • /
    • pp.29-35
    • /
    • 2001
  • This study was carried out to recover gold, silver and valuable metals from the printed circuit boards (PCBs) of waste computers. PCBs samples were crushed under 1 mm by a shredder and separated into 30% conducting and loft nonconducting materials by an electrostatic separator. The conducting materials contained valuable metals which were then used as feed materials for magnetic separation. 42% of magnetic materials from the conducting materials was removed by magnetic separation as nonvaluable materials and the others, 58% of non magnetic materials, was used as leaching samples containing 0.227 mg/g Au and 0.697 mg/g Ag. Using the materials of leaching from magnetic separation, more than 95% of copper, iron, zinc, nickel and aluminium was dissolved in 2.0M sulfuric acid solution, added with 0.2M hydrogen peroxide at $85^{\circ}C$. Au and Ag were not extracted in this solution. On the other hand, more than 95% of gold and 100% of silver were leached by the selective leaching with a mixed solvent (0.2M($NH_4$)$_2$$S_2$$O_3$,0.02M $CuSO_4$,0.4M $NH_4$OH). Finally, the residues were reacted with a NaCl solution to leach Pb whereas sulfuric acid was used to leach Sn. Recoveries reached 95% and 98% in solution, respectively.

  • PDF

Condensable Gas Separation using Phenol! Alumina Composite Activated Carbon Hollow Fiber Membranes (페놀수지/알루미나 복합 활성탄소중공사막을 이용한 응축성 기체 분리)

  • Shin, Kyung-Yong;Park, You-In;Kim, Beom-Sik;Koo, Kee-Kahb
    • Membrane Journal
    • /
    • v.20 no.4
    • /
    • pp.312-319
    • /
    • 2010
  • Carbon membrane materials have received considerable attention for the gas separation including hydrocarbon mixture of ingredients of the volatile organic compounds(VOCs) because they possess their higher selectivity, permeability, and thermal stability than the polymeric membranes. The use of activated carbon membranes makes it possible to separate continuously the VOCs mixture by the selective adsorption-diffusion mechanism which the condensable components are preferentially adsorbed in to the micropores of the membrane. The activated carbon hollow fiber membranes with uniform adsorptive micropores on the wall of open pores and the surface of the membranes have been fabricated by the carbonization of a thin film of phenolic resin deposited on porous alumina hollow fiber membrane. Oxidation, carbonization, and activation processing variables were controlled under different conditions in order to improve the separation characteristics of the activated carbon membrane. Properties of activated carbon hollow fiber membranes and the characterization of a gas permeation by pyrolysis conditions were studied. As the result, the activated carbon hollow fiber membranes with good separation capabilities by the molecular size mechanism as well as selective adsorption on the pores surface followed by surface diffusion effective in the recovery hydrocarbons have been obtained. Therefore, these activated carbon membranes prepared in this study are shown as promising candidate membrane for separation of VOCs.

1,3-Dioxolane-Based CO2 Selective Polymer Membranes for Gas Separation (1,3-Dioxolane 기반 CO2 선택성 고분자막의 개발)

  • Iqubal Hossain;Asmaul Husna;Ho Bum Park
    • Membrane Journal
    • /
    • v.33 no.3
    • /
    • pp.94-109
    • /
    • 2023
  • 1,3-Dioxolane is an exciting material that has attracted widespread interest in the chemical, paint, and pharmaceutical industries as a solvent, electrolyte, and reagent because 1,3-dioxolane is not toxic, carcinogenic, explosive, auto-flammable, and multifunctional, and due to their excellent miscibility in most organic and aqueous solvent conditions. Recently, this material has received increasing attention as a CO2-selective polymer precursor to separating CO2 from flue gas and natural gas mixtures. Poly(1,3-dioxolane) (PDXL) possesses higher ether oxygen content than polyethylene oxide (PEO), which demonstrates superior membrane CO2/N2 separation properties owing to their polar ether oxygen groups exhibiting strong affinity toward CO2. Thus, PDXL-based membranes displayed an outstanding CO2 solubility selectivity over non-polar (N2, H2, and CH4) gases. However, the polar groups of PDXL, like PEO, promote chain packing efficiency and cause polymer crystallization, thereby reducing its gas permeability, which should be improved. In this short review, we discuss the recent advancement and limitations of PDXL membranes in gas separation applications. To conclude, we provide future perspectives for inhibiting the limits of 1,3-dioxolane-based polymers in the CO2 separation process.

Fabrication of Meso/Macroporous Carbon Monolith and its Application as a Support for Adsorptive Separation of D-Amino Acid from Racemates

  • Park, Da-Min;Jeon, Sang Kwon;Yang, Jin Yong;Choi, Sung Dae;Kim, Geon Joong
    • Bulletin of the Korean Chemical Society
    • /
    • v.35 no.6
    • /
    • pp.1720-1726
    • /
    • 2014
  • (S)-Alanine Racemase Chiral Analogue ((S)-ARCA) was used as an efficient adsorbent for the selective separation of D-amino acids (D-AAs), which are industrially important as chiral building blocks for the synthesis of pharmaceutical intermediates. The organic phase, containing (S)-ARCA adsorbent and phase transfer reagents, such as ionic liquid type molecules (Tetraphenylphosphonium chloride (TPPC), Octyltriphenylphosponium bromide (OTPPBr)), were coated on the surfaces of mesoporous carbon supports. For the immobilization of chiral adsorbents, meso/macroporous monolithic carbon (MMC), having bimodal pore structures with high surface areas and pore volumes, were fabricated. The separation of chiral AAs by adsorption onto the heterogeneous (S)-ARCA was performed using a continuous flow type packed bed reactor system. The effects of loading amount of ARCA on the support, the molar ratio of AA to ARCA, flow rates, and the type of phase transfer reagent (PTR) on the isolation yields and the optical purity of product D-AAs were investigated. D-AAs were selectively combined to (S)-ARCA through imine formation reaction in an aqueous basic solution of racemic D/L-AA. The (S)-ARCA coated MMC support showed a high selectivity, up to 95 ee%, for the separation of D-type phenylalanine, serine and tryptophan from racemic mixtures. The ionic liquids TPPC and OTPPBr exhibited superior properties to those of the ionic surfactant Cetyltrimethyl ammonium bromide (CTAB), as a PTR, showing constant optical purities of 95 ee%, with high isolation yields for five repeated reuses. The unique separation properties in this heterogeneous adsorption system should provide for an expansion of the applications of porous materials for commercial processes.

Highly Selective Transport of Ag+Ion through a Liquid Membrane Containing 2-Mercaptobenzothiazole as a Carrier

  • Akhond, Morteza;Tashkhourian, Javad
    • Bulletin of the Korean Chemical Society
    • /
    • v.24 no.4
    • /
    • pp.489-493
    • /
    • 2003
  • 2-Mercaptobenzothiazole was used as a highly selective and efficient carrier for the uphill transport of silver ion through a chloroform bulk liquid membrane. In the presence of thiosulfate ion as a suitable metal ion acceptor in the receiving phase, the amount of silver transported across the liquid membrane after 180 min was 90 ± 3.0%. The selectivity and efficiency of silver ion transported from aqueous solutions containing equimolar mixtures of $Zn^{2+}, Cu^{2+}, Co^{2+}, Ni^{2+}, Cd^{2+}, Pb^{2+}, Bi^{3+}, Fe^{2+}, Fe^{3+}, Pd^{2+}, Mn^{2+}, Hg^{2+}, Sn^{2+}, Ca^{2+}, Mg^{2+}, K^+, Na^+ and Li^+$ were investigated.