• Title/Summary/Keyword: Selective medium

Search Result 309, Processing Time 0.03 seconds

Development of PCR Primers to Detect Pseudomonas savastanoi pv. phaseolicola from the Bean Seeds (강낭콩 종자에서 Pseudomonas savastanoi pv. phaseolicola의 검출을 위한 PCR 프라이머의 개발)

  • Cho, Jung-Hee;Jeong, Min-Jung;Song, Min-Ji;Yim, Kyu-Ock;Lee, Hyok-In;Kim, Jung-Hee;Baeg, Ji-Hyun;Cha, Jae-Soon
    • Research in Plant Disease
    • /
    • v.16 no.2
    • /
    • pp.129-135
    • /
    • 2010
  • PCR primers were developed to detect Pseudomonas savastanoi pv. phaseolicola, a causal agent of halo blight that occurs in all species of common bean (Phaseolus vulgaris L.), from the bean seeds. A primer set, Psp-JHF and Psp-JH-R, specifically amplified 513 bp fragment from Pseudomonas savastanoi pv. phaseolicola only. A nested primer set, psp-JH-F-ne and psp-JH-R-ne, designed from the $1^{st}$ PCR amplicon, amplified 169 bp fragment. The primer sets did not amplify any non-specific DNA from the seed extracts of Fabaceae including 4 beans, 2 soybeans, and 2 peas. The detection sensitivity of the nested PCR method developed in this study was much higher than that of ELISA and selective medium. PCR assays developed in this study should be useful to detect Pseudomonas savastanoi pv. phasolicola from the bean seeds.

The Electrochemical Studies of Non-enzymatic Glucose Sensor on the Nickel Nanoparticle-deposited ITO Electrode (ITO 전극 위에 고정된 니켈 나노 입자를 이용한 무효소 혈당센서에 관한 전기화학적인 연구)

  • Oh, In-Don;Kim, Samantha;Choi, Young-Bong
    • Journal of the Korean Electrochemical Society
    • /
    • v.17 no.3
    • /
    • pp.164-171
    • /
    • 2014
  • A highly sensitive and selective non-enzymatic glucose sensor has gained great attention because of simple signal transformation, low-cost, easily handling, and confirming the blood glucose as the representative technology. Until now, glucose sensor has been developed by the immobilization of glucose oxidase (GOx) on the surface of electrodes. However although GOx is quite stable compared with other enzymes, the enzyme-based biosensors are still impacted by various environment factors such as temperature, pH value, humidity, and toxic chemicals. Non-enzymatic sensor for direct detecting glucose is an attractive alternative device to overcome the above drawbacks of enzymatic sensor. Many efforts have been tried for the development of non-enzymatic sensors using various transition metals (Pt, Au, Cu, Ni, etc.), metal alloys (Pt-Pb, Pt-Au, Ni-Pd, etc.), metal oxides, carbon nanotubes and graphene. In this paper, we show that Ni-based nano-particles (NiNPs) exhibit remarkably catalyzing capability for glucose originating from the redox couple of $Ni(OH)_2/NiOOH$ on the surface of ITO electrode in alkaline medium. But, these non-enzymatic sensors are nonselective toward oxidizable species such as ascorbic acid the physiological fluid. So, the anionic polymer was coated on NiNPs electrode preventing the interferences. The oxidation of glucose was highly catalyzed by NiNPs. The catalytically anodic currents were linearly increased in proportion to the glucose concentration over the 0~6.15 mM range at 650 mV versus Ag/AgCl.

Interaction between the Rice Pathogens, Fusarium graminearum and Burkholderia glumae

  • Lee, Jungkwan;Jung, Boknam;Park, Jungwook;Kim, Sungyoung;Youn, Kihun;Seo, Young-Su
    • 한국균학회소식:학술대회논문집
    • /
    • 2014.10a
    • /
    • pp.13-13
    • /
    • 2014
  • Species belonging to the genus Fusarium are widely distributed and cause diseases in many plants. Isolation of fungal strains from air or cereals is necessary for disease forecasting, disease diagnosis, and population genetics [1]. Previously we showed that Fusarium species are resistant to toxoflavin produced by the bacterial rice pathogen Burkholderia glumae while other fungal genera are sensitive to the toxin, resulting in the development of a selective medium for Fusarium species using toxoflavin [2]. In this study, we have tried to elucidate the resistant mechanism of F. graminearum against toxoflavin and interaction between the two pathogens in nature. To test whether B. glumae affects the development of F. graminearum, the wild-type F. graminearum strains were incubated with either the bacterial strain or supernatant of the bacterial culture. Both conditions increased the conidial production five times more than when the fungus was incubated alone. While co-incubation resulted in dramatic increase of conidial production, conidia germination delayed by either the bacterial strain or supernatant. These results suggest that certain factors produced by B. glumae induce conidial production and delay conidial germination in F. graminearum. To identify genes related to toxoflavin resistance in F. graminearum, we screened the transcriptional factor mutant library previously generated in F. graminearum [3] and identified one mutant that is sensitive to toxoflavin. We analyzed transcriptomes of the wild-type strain and the mutant strain under either absence or presence of toxoflavin through RNAseq. Expression level of total genes of 13,820 was measured by reads per kilobase per million mapped reads (RPKM). Under the criteria with more than two-fold changes, 1,440 genes were upregulated and 1,267 genes were down-regulated in wild-type strain than mutant strain in response to toxoflavin treatment. A comparison of gene expression profiling between the wild type and mutant through gene ontology analysis showed that genes related to metabolic process and oxidation-reduction process were highly enriched in the mutant strain. The data analyses will focus on elucidating the resistance mechanism of F. graminearum against toxoflavin and the interaction between the two pathogens in rice. Further evolutionary history will be traced through figuring out the gene function in populations and in other filamentous fungi.

  • PDF

The Inhibitory Effects of Intestine-oriented Lactobacillus sp. KP-3 on the Accumulation of Heavy Metals in Sprague Dawley rats (Sprague Dawley 쥐에서 장내 유래 Lactobacillus sp. KP-3의 중금속 축적 저해 효과)

  • Kim, Shin Yeon;Kim, Hyun Pyo
    • Journal of Life Science
    • /
    • v.25 no.2
    • /
    • pp.164-173
    • /
    • 2015
  • To investigate the effect of lactic acid bacteria on the heavy metal adsorption from internal organs and blood, lactic acid bacteria were isolated from human feces. Some strains resistant to heavy metals were selected by incubation in agar media containing each of chrome and cadmium salts. Among them, a strain named KP-3 was ultimately chosen due to its higher growth rate in selective broth medium containing the heavy metals at the concentration of 0.01%. The strain was identified as Lactobacillus sp. based on its morphological, cultural and physiological characteristics. For evaluating the ability to prevent accumulation of heavy metals by selected Lactobacillus sp. strain in vivo, Sprague Dawley rats were fed with heavy metal salts (cadmium, chrome and lead) with or without cultured whole cells for 7 days. The amounts of heavy metals accumulated in liver, kidney and blood were analyzed. As a result, chrome was accumulated to kidney mostly, and lead was frequently found in liver and kidney. Experimental group (rats fed with lactic acid bacteria) showed less accumulation of heavy metal than control group (rats fed with saline solution). The inhibition rates of heavy metal accumulation were calculated to 41.8% (Cd), 33.4% (Cr) and 44.2% (Pb). Especially, feeding lactic acid bacteria strongly reduced accumulation of cadmium in blood. The results showed that feeding Lactobacillus sp. KP-3 could prevent the bioaccumulation of heavy metals in the living body.

Channel characteristics of multi-path power line using a contactless inductive coupling unit (비접촉식 유도성 결합기를 이용한 다중경로 전력선 채널 특성)

  • Kim, Hyun-Sik;Sohn, Kyung-Rak
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.40 no.9
    • /
    • pp.799-804
    • /
    • 2016
  • Broadband powerline communication (BPLC) uses distribution lines as a medium for achieving effective bidirectional data communication along with electric current flow. As the material characteristics of power lines are not good at the communication channel, the development of power line communication (PLC) systems for internet, voice, and data services requires measurement-based models of the transfer characteristics of the network suitable for performance analysis by simulation. In this paper, an analytic model describing a complex transfer function is presented to obtain the attenuation and path parameters for a multipath power line model. The calculated results demonstrated frequency-selective fading in multipath channels and signal attenuation with frequency, and were in good agreement with the experimental results. Inductive coupling units are used as couplers for coupling the signal to the power line to avoid physical connections to the distribution line. The inductance of the ferrite core, which depends on the frequency, determines the cut-off frequency of the inductive coupler. Coupling loss can be minimized by increasing the number of windings around the coupler. Coupling efficiency was improved by more than 6 dB with three windings compared to the results obtained with one winding.

Development of Bialaphos-Resistant Transgenic Rice Using Agrobacterium tumefaciens (Agrobacterium tumefaciens를 이용한 bialaphos 저항성 형질전환 벼의 개발)

  • 이효연;이춘환;김호일;한원동;최지은;김진호;임용표
    • Korean Journal of Plant Tissue Culture
    • /
    • v.25 no.4
    • /
    • pp.283-288
    • /
    • 1998
  • The bialaphos is a potent inhibitor of glutamine synthease in higher plants and is used as a non-selective herbicide. We have used the bialaphos resistant gene(Bar) encoding for an acetyltransferase isolated from Streptomyces hygroscopicus SF1293. Callus derived from mature seeds of rice(Oryza sativa L. cv. Dong Jin) were co-cultivated with Agrobacterium tumefaciens EHA101 carring a plasmid pGPTV-HB containing genes for hygromycin resistance (HygR) and Bar. Transgenic plants showing in vitro resistance to 50 mg/L hygromycin and 10 mg/L bialaphos were obtained by using a two-step selection/regeneration procedure. Transformation efficiency of rice was about 30% which was as high as reported in other dicotyledons. Progenies ($\textrm{T}_{1}$ generation) derived from primary transformant of 17 lines were segregated with a 3 resistant : 1 sensitive ratio in medium containing hygromycin and bialaphos. Stable integration of Bar gene into chromosomal DNA was proven by Southern blot analysis of genomic DNA isolated from $\textrm{T}_{2}$ progenies. Transgenic plants ($\textrm{T}_{3}$) grown in the field were resistant to bialaphos (Basta) at a dosage lethal to wild type plants.

  • PDF

Isolation of Hypervirulent Agrobacterium spp from Korea and Application for Transformation of Tobacco (한국산 고감염 Agrobacterium spp의 분리 및 연초의 형질전환에 이용)

  • 양덕춘;정재훈;이정명
    • Korean Journal of Plant Tissue Culture
    • /
    • v.25 no.3
    • /
    • pp.207-217
    • /
    • 1998
  • Total of 78 strains were characterized based on the morphological characteristics of colonies isolated on Schroth, and New & Kerr's media for selection of hypervirulent wild-type Agrobacterium spp from galls, hairy root-like process and soil of Populus, Malus, Salix and Diopyros in Korea. Among them, 48 strains were able to induce tumors in carrot disc. Hypervirulent A. tumefaciens SP101 and SM042 were identified as biotype 1 and biotype 2, respectively, These strains formed fast growing, larger tumors as compared to those induced by other strains. The binary vector pGA643 with kanamycin resistant gene was mobilized from E. coli MC100 into A. tumefaciens strain SM042 isolated from soil, and/or disarmed vector PC2760 using a triparental mating method with E. coli HB101/pRK2013, and transconjugants, A. tumefaciens SM643 and PC643 were obtained in minimal media containing kanamycin and tetracycline. Tobacco tissues were cocultivated with conjugant Agrobacterium and then transferred to selective medium with 2,4-D and kanamycin to induce the transformants. Calli were formed more efficiently in cocultivation with A. tumefaciens SM643 than that with A. tumefaciens PC643. Most of calli transformed with A. tumefaciens PC643 were friable and regenerated into normal plantlets, while the calli transformed with A. tumefaciens SM643 were compact, hard, and mixed with friable calli. The friable calli formed normal shoots, while compact calli did not form shoots but only grew to typical compact tumor calli. When the shoots formed directly from tobacco stems without callus induction after transformation by A. tumefaciens SM643 with wild-type Ti-plasmid, normal transformed plants can be induced without using disarmed Ti-plasmid.

  • PDF

The Effects of SCM Competency and Process Improvement on Operational Performance in Small and Venture Companies (중소벤처기업의 SCM역량과 프로세스 개선이 운영성과에 미치는 영향)

  • Lee, Seolbin;Park, Jugyeon
    • Asia-Pacific Journal of Business Venturing and Entrepreneurship
    • /
    • v.13 no.6
    • /
    • pp.143-154
    • /
    • 2018
  • This study is intended to look into the effects of SCM(supply chain management) competency and process improvement on operational performance in small and venture companies. To achieve this, a survey was empirically carried out to 179 small and venture manufacturing companies. The findings showed that the SCM competency had a significant effect on the process improvement and operational performance in small and venture companies, adopting all hypotheses. And the process improvement had a significant mediating effect on the relationship between SCM competency and operational performance in small and venture companies, adopting hypothesis 4. As for the findings, strategic alliance, technology development, competency concentration as SCM competencies and starting preparation, detailed planning, implementation management as process improvements were factors that have positive effects on quality performance, cost reduction and profit increase as operational performances in small and venture companies. In other words, the better process and performance by the maximized SCM competencies require selective input strategies for strategic alliance, technology development and competency concentration in small and venture companies. And for its early application and settlement, the starting preparation and detailed planning of business process within small and venture companies need to be jointly put in action under clear company-wide goal management. Consequently, the expected performance can be maximized when strict management and implementation lead to these attributes.

Electrochemical properties of porous AuCu dendrite surface for the oxygen reduction reaction in alkaline solutions (알칼리 수용액에서 산소환원반응에 대한 다공성 AuCu 덴드라이트 표면의 전기화학적 특성 평가)

  • Kim, Min-Yeong;Lee, Jong Won;Cho, Soo Yeon;Park, Da Jung;Jung, Hyun Min;Lee, Joo Yul;Lee, Kyu Hwan
    • Journal of the Korean institute of surface engineering
    • /
    • v.54 no.1
    • /
    • pp.1-11
    • /
    • 2021
  • Porous dendrite structure AuCu alloy was formed using a hydrogen bubble template (HBT) technique by electroplating to improve the catalytic performance of gold, known as an excellent oxygen reduction reaction (ORR) catalyst in alkaline medium. The rich Au surface was maximized by selectively electrochemical etching Cu on the AuCu dendrite surface well formed in a leaf shape. The catalytic activity is mainly due to the synergistic effect of Au and Cu existing on the surface and inside of the particle. Au helps desorption of OH- and Cu contributes to the activation of O2 molecule. Therefore, the porous AuCu dendrite alloy catalyst showed markedly improved catalytic activity compared to the monometallic system. The porous structure AuCu formed by the hydrogen bubble template was able to control the size of the pores according to the formation time and applied current. In addition, the Au-rich surface area increased by selectively removing Cu through electrochemical etching was measured using an electrochemical calculation method (ECSA). The results of this study suggest that the alloying of porous AuCu dendrites and selective Cu dissolution treatment induces an internal alloying effect and a large specific surface area to improve catalyst performance.

Plant regeneration and transformation of grape (Vitis labrusca L.) via direct regeneration method (포도 (Vitis labrusca L.)의 직접 재분화 방법을 이용한 식물체 재분화와 형질전환)

  • Kim, Se Hee;Shin, Il Sheob;Cho, Kang Hee;Kim, Dae Hyun;Kim, Hyun Ran;Kim, Jeong Hee;Lim, Sun-Hyung;Kim, Ki Ok;Lee, Hyang Bun;Do, Kyung Ran;Hwang, Hae Seong
    • Journal of Plant Biotechnology
    • /
    • v.40 no.4
    • /
    • pp.210-216
    • /
    • 2013
  • Efficient regeneration methods and transformation system are a priority for successful application of genetic engineering to vegetative propagated plants such as grape (Vitis labrusca L.). This research is to establish shoot regeneration system from plant explants for 'Campbell Early', 'Tamnara', 'Heukgoosul', 'Heukbosek' using two types of plant growth regulators supplemented to medium. The highest adventitious shoot regeneration rate of 5% was achieved on a medium containing of Murashige and Skoog (MS) inorganic salts and Linsmaier and Skoog (LS) vitamins, 2 mg/L of TDZ and 0.1 mg/L of IBA. Leaf tissue of 'Campbell Early', was co-cultivated with Agrobacterium strains, LBA4404 containing the vector pBI121 carrying with CaMV 35S promoter, gus gene as reporter gene and resistance to kanamycin as selective agent, the other Agrobacterium strains, GV3101 containing the vector pB7 WG2D carrying with mPAP1-D gene. mPAP1-D is a regulatory genes of the anthocyanin biosynthetic pathway. 'Campbell Early' harboring mPAP1-D gene was readily able to be selected by red color due to anthocyanin accumulation in the transformed shoot. These results might be helpful for further studies to enhance the transformation efficiency in grape.