DOI QR코드

DOI QR Code

The Electrochemical Studies of Non-enzymatic Glucose Sensor on the Nickel Nanoparticle-deposited ITO Electrode

ITO 전극 위에 고정된 니켈 나노 입자를 이용한 무효소 혈당센서에 관한 전기화학적인 연구

  • Oh, In-Don (Department of chemistry, College of Advanced Science, Dankook University) ;
  • Kim, Samantha (Gyeonggi Suwon International School) ;
  • Choi, Young-Bong (Department of chemistry, College of Advanced Science, Dankook University)
  • 오인돈 (단국대학교 자연과학대학 화학과) ;
  • 김사만다 (경기수원외국인학교) ;
  • 최영봉 (단국대학교 자연과학대학 화학과)
  • Received : 2014.07.14
  • Accepted : 2014.07.24
  • Published : 2014.08.31

Abstract

A highly sensitive and selective non-enzymatic glucose sensor has gained great attention because of simple signal transformation, low-cost, easily handling, and confirming the blood glucose as the representative technology. Until now, glucose sensor has been developed by the immobilization of glucose oxidase (GOx) on the surface of electrodes. However although GOx is quite stable compared with other enzymes, the enzyme-based biosensors are still impacted by various environment factors such as temperature, pH value, humidity, and toxic chemicals. Non-enzymatic sensor for direct detecting glucose is an attractive alternative device to overcome the above drawbacks of enzymatic sensor. Many efforts have been tried for the development of non-enzymatic sensors using various transition metals (Pt, Au, Cu, Ni, etc.), metal alloys (Pt-Pb, Pt-Au, Ni-Pd, etc.), metal oxides, carbon nanotubes and graphene. In this paper, we show that Ni-based nano-particles (NiNPs) exhibit remarkably catalyzing capability for glucose originating from the redox couple of $Ni(OH)_2/NiOOH$ on the surface of ITO electrode in alkaline medium. But, these non-enzymatic sensors are nonselective toward oxidizable species such as ascorbic acid the physiological fluid. So, the anionic polymer was coated on NiNPs electrode preventing the interferences. The oxidation of glucose was highly catalyzed by NiNPs. The catalytically anodic currents were linearly increased in proportion to the glucose concentration over the 0~6.15 mM range at 650 mV versus Ag/AgCl.

무효소 혈당센서는 높은 선택성과 민감성을 가지고 저비용으로 체내 혈당(glucose)을 검출할 수차세대 기술이다. 현재 시판되고 있는 혈당센서는 당을 산화시켜주는 당산화효소와 전극과 효소사이에 전자 전달을 원활하게 해주는 산화/환원 매개체를 이용하여 효소센서로 제작된다. 그러나 이러한 효소센서는 pH, 온도, 습도, 화학적 독성물질 등에 영향을 많이 받아 안정성이 떨어지고, 제작에 비용이 많이 드는 단점을 가지고 있다. 본 논문은 위와 같은 단점을 해결하고자 환원제인 당에 의하여 환원되는 니켈 나노입자를 전기화학적 흡착방법을 이용하여 산화 인듐 주석 전극 (ITO)에 고정시켰다. 고정된 니켈 나노입자는 전극의 표면적을 넓혀 신호를 증폭시키는 효과를 가지고 있으며, 당에 의하여 계속적으로 니켈이 환원됨에 따라 전극 반응에서는 촉매산화전류 반응으로 나타낸다. 당의 농도에 따라서 선형적으로 감응 할 수 있는 최적 조건의 니켈 나노입자를 이용하여 혈당센서를 제작하였다. 또한 체내에 존재하는 방해 인자인 아스코브산의 간섭을 억제하기 위해 음이온 고분자의 표면처리를 통하여 상대적으로 당에 선택적으로 감응하도록 하였다. 제작된 전극을 통하여 당 농도 별 산화 촉매 전류를 순환 전압 전류 법으로 측정한 결과 650 mV (vs. Ag/AgCl)에서 최대 전기적 신호가 발생되었으며, 포도당 0~6.15 mM 의 농도범위에서 전기적 신호가 선형 증가함을 확인할 수 있었다.

Keywords

References

  1. L. C. Clark Jr. and C. Lyons, 'Electrode systems for continuous monitoring in cardiovascular surgery' Ann. N.Y. Acad. Sci., 102, 29 (1962).
  2. J. Wang, 'Glucose biosensors: 40 years of advances and challenges' Electroanalysis., Interfacial Electrochem., 13, 983 (2001).
  3. K. Wang, J. J. Xu, and H. Y. Chen, 'A novel glucose biosensor based on the nanoscaledcobalt phthalocyanine-glucose oxidase biocomposite' Biosens. Bioelectron., 20, 1388 (2005). https://doi.org/10.1016/j.bios.2004.06.006
  4. A. P. F. Turner, 'Diabetes mellitus: biosensors for research and management' World Biotech. Rep., 1, 181 (1985).
  5. M. A. Lange and J. Q. Chambers, 'Amperometric determination of glucose with a ferrocene-mediated glucose oxidase/polyacrylamide gel electrode' Anal. Chim. Acta., 175, 89 (1985). https://doi.org/10.1016/S0003-2670(00)82720-8
  6. B. A. Gregg and A. Heller, 'Redox polymer films containing enzymes. 2. Glucose oxidase containing enzyme electrodes' J. Phys. Chem., 95, 5976 (1991) https://doi.org/10.1021/j100168a047
  7. B. P. Giordano, W. Thrash, L. Hollenbaugh, W. P. Dube, C. Hodges, A. Swain, C. R. Banion, and G. J. Klingensmith, 'Performance of seven blood glucose testing systems at high altitude' Diabetes Educ., 15, 444 (1989). https://doi.org/10.1177/014572178901500515
  8. T. Kohma, D. Oyamatsu, S. Kuwabata, 'Preparation of selective micro glucose sensor without permselective membrane by electrochemical deposition of ruthenium and glucose oxidase' Electrochem. Commun., 9, 1012 (2007). https://doi.org/10.1016/j.elecom.2006.12.015
  9. S. Park, T. D. Chung, H. C. Kim, 'Nonenzymatic glucose detection using mesoporous platinum' Anal. Chem., 75, 3046 (2003). https://doi.org/10.1021/ac0263465
  10. B. K. Jena, C. R. Raj, 'Enzyme-free amperometric sensing of glucose by using gold nanoparticles' Chem. Eur. J., 12, 2702 (2006). https://doi.org/10.1002/chem.200501051
  11. H. Y. Bai, M. Han, Y. Z. Du, J. C. Bao, and Z. H. Dai, 'Facile synthesis of porous tubular palladium nanostructures and their application in a nonenzymatic glucose sensor' Chem. Commun., 46, 1739 (2010). https://doi.org/10.1039/b921004k
  12. L. M. Lu, L. Zhang, F. L. Qu, H. X. Lu, X. B. Zhang, Z. S. Wu, S. Y. Huan, Q. A. Wang, G. L. Shen, and R. Q. Yu, 'A nano-Ni based ultrasensitive nonenzymatic electrochemical sensor for glucose: Enhancing sensitivity through a nanowire array strategy' Biosens. Bioelectron., 25, 218 (2009). https://doi.org/10.1016/j.bios.2009.06.041
  13. J. P. Wang, D. F. Thomas, and A. C. Chen, 'Nonenzymatic electrochemical glucose sensor based on nanoporous PtPb networks' Anal. Chem., 80, 997 (2008). https://doi.org/10.1021/ac701790z
  14. P. H. Hindle, S. Nigro, M. Asmussen, and A. C. Chen, 'Amperometric glucose sensor based on platinum-iridium nanomaterials' Electrochem. Commun., 10, 1438 (2008). https://doi.org/10.1016/j.elecom.2008.07.042
  15. X. J. Zhang, G. F. Wang, X. W. Liu, J. J. Wu, M. Li, J. Gu, H. Liu, and B. Fang, 'Different CuO nanostructures: synthesis, characterization, and applications for glucose sensors' J. Phys.Chem. C., 112, 16845 (2008). https://doi.org/10.1021/jp806985k
  16. Y. Ding, Y. Wang, L. Su, M. Bellagamba, H. Zhang, and Y. Lei, 'Electrospun $Co_3O_4$ nanofibers for sensitive and selective glucose detection' Biosens. Bioelectron., 26, 542 (2010). https://doi.org/10.1016/j.bios.2010.07.050
  17. P. P. Joshi, S. A. Merchant, Y. Wang, and D. W. Schmidtke, 'Amperometric biosensors based on redox polymer-carbon nanotube-enzyme composites' Anal. Chem., 77, 3183 (2005). https://doi.org/10.1021/ac0484169
  18. Y. Liu, D. Yu, C. Zeng, Z. Miao, and L. Dai, 'Biocompatible graphene oxide-basedglucose biosensors' Langmuir., 26, 6158 (2010). https://doi.org/10.1021/la100886x
  19. Y. Mu D. L. Jia, Y. Y. He, Y. Q. Miao, and H. L. Wu, 'Nano nickel oxidemodified non-enzymatic glucose sensors with enhanced sensitivity through an electro-chemical process strategy at high potential' Biosens. Bioelectron., 26, 2948 (2011). https://doi.org/10.1016/j.bios.2010.11.042
  20. M. Shamsipur, M. Najafi, and M. R. Milani Hosseini, 'Highly improved electrooxidation of glucose at a nickel(II) oxide/multiwalled carbon nanotube modified glassy carbon electrode' Bioelectrochemistry., 77, 120 (2010). https://doi.org/10.1016/j.bioelechem.2009.07.007
  21. N. Qiao and J. Zheng, 'Nonenzymatic glucose sensor based on glassy carbon elec-trode modified with a nanocomposite composed of nickel hydroxide andgrapheme' Microchim. Acta., 177, 103 (2012). https://doi.org/10.1007/s00604-011-0756-3
  22. K. E. Toghill, L. Xiao, M. A. Phillips, and R. G. Compton, 'The non-enzymatic determination of glucose using an electrolytically fabricated nickel microparticle modified boron-doped diamond electrode or nickel foil electrode' Sens. Actuator. B: Chem., 147, 642 (2010). https://doi.org/10.1016/j.snb.2010.03.091
  23. A. Safavi, N. Maleki, and E. Farjami, 'Fabrication of a glucose sensor based on a novel nanocomposite electrode' Biosens. Bioelectron., 24, 1655 (2009). https://doi.org/10.1016/j.bios.2008.08.040
  24. E. Scavetta, S. Stipa, and D. Tonelli, 'Electrodeposition of a nickel-based hydrotalciteon Pt nanoparticles for ethanol and glucose sensing' Electrochem. Commun., 9, 2838 (2007). https://doi.org/10.1016/j.elecom.2007.10.007
  25. J. Wang, J. Liu, L. Chen, and F. Lu, 'Highly selective membrane-free, mediator-free glucose biosensor' Anal. Chem., 66, 3600 (1994). https://doi.org/10.1021/ac00093a011
  26. H. Nie, Z. Yao, X. Zhou, Z. Yang, and S. Huang, 'Nonenzymatic electrochemicaldetection of glucose using well-distributed nickel nanoparticles on straightmulti-walled carbon nanotubes' Biosens. Bioelectron., 30, 28 (2011). https://doi.org/10.1016/j.bios.2011.08.022