• Title/Summary/Keyword: Selective adsorption

Search Result 214, Processing Time 0.023 seconds

Synthesis of N-Methylthiobenzyl-Chitosan Beads and It's Selective Adsorption Abilities of Metal Ions (N-Methylthiobenzyl-Chitosan Bead의 합성과 금속이온의 선택적 흡착능력)

  • 최한영;한상문;안병제;이성호;유국현;이승진
    • Journal of environmental and Sanitary engineering
    • /
    • v.16 no.2
    • /
    • pp.91-99
    • /
    • 2001
  • Cross linked chitosan beads showed high selective adsorption abilities in order of $Au^{3+}$ > $Hg^{2+}$ > $Cu^{2+}$ > $Cd^{2+}$ > $Pt^{4+}$ > ${UO_2}^{2+}$ ions in mixed solution of various metal ions at pH 4.5. N-methyltyiobenzylated chitosan beads(MTB-chitosan beads) were prepared treating with p-(methylthio) benzaldehyde after cross linking of chitosan beads to give them a high selectivity in adsorption of metal ions. The MTB-chitosan beads demonstrated their selectivity on precious metals among various metal ions distinctively. Particularly, the MTB-chitosan had a peculiar selective adsorption on $Pd^{2+}$, $Au^{2+}$, and $Hg^{2+}$ions whilst the cross linked chitosan beads showed its high adsorption on $Pd^{2+}$ at pH 1.1. On the other hand, the cross linked chitosan beads showed its superiority in selective adsorption on $Au^{2+}$, $Cu^{2+}$, and $Hg^{2+}$ions to the MTB-chitosan at pH 4.5 of the test solution. Thus metal selectivities were given to chitosan beads through chemical modifications.

  • PDF

Selective DNA Adsorption on Layered Double Hydroxide Nanoparticles

  • Kim, Kyoung-Min;Park, Chung-Berm;Choi, Ae-Jin;Choy, Jin-Ho;Oh, Jae-Min
    • Bulletin of the Korean Chemical Society
    • /
    • v.32 no.7
    • /
    • pp.2217-2221
    • /
    • 2011
  • We investigated the selective deoxyribonucleic acid (DNA) adsorption on layered double hydroxide (LDH) nanoparticles via studying the interaction between positively charged LDH nanoparticle as adsorbent and negatively charged adsorbates such as methyl orange (MO), fluorescein (FL), and DNA strands. The size controlled LDH $(Mg_{0.78}Al_{0.22}(OH)_2(CO_3)_{0.11}{\cdot}mH_2O)$ was prepared by conventional coprecipitation method, followed by the hydrothermal treatment. According to the adsorption isotherms, the adsorbed amounts of MO and FL were similar, however, that of DNA were much larger. The adsorption behaviors were well fitted to Freundlich adsorption model. The concentration dependent adsorption behavior on LDH surface was described in order to verify the selective DNA separation ability. The result showed that the LDH has advantages in selective adsorption of DNA competing with single molecular anions.

Selective Adsorption of Flavonoids Compounds from the Leaf of Ginkgo biloba L. (은행(Ginkgo biloba L)의 잎으로부터의 Flavonoids 화합물의 선택적 흡착)

  • 윤성용;최원재박종문
    • KSBB Journal
    • /
    • v.11 no.6
    • /
    • pp.726-732
    • /
    • 1996
  • Selective adsorption of plant metabolites from a polar dilute solution onto a polycarboxyl ester sorbent (XAD-7) was investigated. Experimental results demonstrated that neutral resins could selectively concentrate specific flavonoids from dilute aqueous mixtures. Adsorption was dependent on the pH of medium, dosage of the resins and medium composition. Especially the medium composition was a key factor for the selective adsorption and it was found that the selective adsorption was dependent on specific sorbent-sorbate-medium characteristics. Under the optimum condition, selectivity increased up to 85% and the yield of recovery was approached to 98%. It was also found that XAD-7 adsorbed flavonoids in the order of hydrophobicity.

  • PDF

Selective removal of cationic dye pollutants using coal ash-derived zeolite/zinc adsorbents

  • Chatchai Rodwihok;Mayulee Suwannakaew;Sang Woo Han;Siyu Chen;Duangmanee Wongratanaphisan;Han S. Kim
    • Membrane and Water Treatment
    • /
    • v.14 no.3
    • /
    • pp.121-128
    • /
    • 2023
  • This study introduces a NaOH/Zn-assisted hydrothermal method for the synthesis of zeolites derived from coal ash (CA). A zeolite/Zn adsorbent is successfully prepared by the activation of CA with NaOH and Zn; it is characterized by a high surface area and a negative surface charge.Methylene blue (MB) and methyl orange (MO) are selected as dye pollutants, and their adsorption onto the zeolite/Zn adsorbent is investigated. Results show the high adsorption capacities of MB and MO and that the negative surface charge facilitates electrostatic interactions between the adsorbates and adsorbents. The zeolite/Zn adsorbents shows the selective adsorption of positively charged dye MB via electrostatic interactions between the =NH+ group (positive dipole) and the oxygen functional group of the adsorbents (negative dipole). The selectivity for the positively charged dye is sufficiently high, with the removal efficiency reaching 99.41% within 10 min. By contrast, the negatively charged dye MO exhibits negligible absorption. These findings confirm the role of electrostatic interactions in the adsorption of MB, in addition to the effect of a large surface area. The results of this study are expected to facilitate the development of simple, eco-friendly, and cost-effective zeolite-based adsorptive composites from CA residuals for the selective removal of dye pollutants from CA waste.

Study of Development of Selective Removal Adsorption Ion Exchange Resin Materials for Fabricated with Chemical-biological Cloth by QFD (QFD 기법을 이용한 특정 유해가스 노출제어 이온선택성 보호복 소재개발연구)

  • Song, Hwa Seon;Koo, Il Seob;Kim, In Sik
    • Journal of Korean Society for Quality Management
    • /
    • v.43 no.3
    • /
    • pp.359-372
    • /
    • 2015
  • Purpose: Through studying the expert's and non-experts panel responses to the questions regarding the attributes of chemical-biological protection cloth quality in terms of the levels of customer demand and technical factors has been studied. We are applied to a QFD matrix with find out the relationship between the selective removal efficiency of chemical-biological cloth and the guidelines of technical approach. Methods: We fabricated several composite of ion-exchange resins with selectively permeable performance designed to facilities water vapor transport and selective adsorption of the harmful gases. With these materials, we characterized on the selectively permeable performance to identify ion-exchange resin with chemical-biological protective cloth. Results: Results showed that ion exchange materials possessed performance with selectively efficiencies as NH3, SOx, NOx and HCl gas. The selective adsorption amount of ammonia and hydrogen gases were $90-80{\mu}g/g$ with TRILITE SCR-BH sulfonated ion exchange resin. The PP non-woven/ion exchange resin adsorbent materials possessed performance with water vapor permeability were 1,100-1,350 g/m2/day, it's was two times high value compare with activated carbon. With these materials, we characterized selectively removal efficiency to identify new ion-exchange material with chemical-biological protective capability. Conclusion: This study shows that a QFD aids in deciding with of the adsorption parameters to optimized with chemical-biological protection cloth manufacturing.

Comparison of Selective Removal of Nitrate Ion in Constant Voltage and Constant Current Operation in Capacitive Deionization (축전식 탈염에서 정전압과 정전류 운전에 따른 질산 이온의 선택적 제거율 비교)

  • Choi, Jae-Hwan;Kim, Hyun-Ki
    • Korean Chemical Engineering Research
    • /
    • v.53 no.3
    • /
    • pp.269-275
    • /
    • 2015
  • The adsorption characteristics of ions were evaluated for the nitrate-selective carbon electrode (NSCE) in accordance with power supply methods. The NSCE was fabricated by coating the surface of a carbon electrode with anion-exchange resin powders with high selectivity for the nitrate ion. Capacitive deionization (CDI) experiments were performed on a mixed solution of nitrate and chloride ion in constant voltage (CV) and constant current (CC) modes. The number of total adsorbed ions in CV mode was 15% greater than that in CC mode. The mole fraction of adsorbed nitrate ion showed the maximum 58%, though the mole fraction was 26% in the mixed solution. This indicates that the fabricated NSCE is highly effective for the selective adsorption of nitrate ions. The mole fraction of adsorbed nitrate was nearly constant value of 55-58% during the adsorption period in CC mode. In the case of CV mode, however, the values increased from the initial 30% to 58% at the end of adsorption. We confirmed that the current supplied to cell is important factor to determine the selective removal of nitrate.

Selective Adsorption of Uranium Ionsin High Concentration of Chemical Salts

  • Jung, Chong-Hun;Won, Hui-Jun;Kim, Gye-Nam;Park, Wangkyu;Wonzin Oh
    • Proceedings of the Korean Radioactive Waste Society Conference
    • /
    • 2004.06a
    • /
    • pp.119-120
    • /
    • 2004
  • A study on the selective adsorption of uranium(VI) from a high concentration of chemical salts has tern peformed to investigate the uranium removal mechanisms and the application conditions of the electrosorption technique using the activated carbon fiber(ACF) as a good conductive electrosorption adsorbent. Electrosorption test were carried out using an electrochemical cell.(omitted)

  • PDF

Use of Selective Ethanol Adsorption for Ethanol Concentration (선택적 에탄올 흡착을 활용한 에탄올 농축공정개발)

  • Jin, Li-Hua;Lee, Jung-Heon
    • KSBB Journal
    • /
    • v.25 no.5
    • /
    • pp.466-470
    • /
    • 2010
  • In this study, we developed simple process for ethanol concentration. We developed magnetically separable polyanilline nanofiber (PAMP) for selective ethanol adsorption. PAMP can adsorbed 80% of ethanol in the solution. After adsorption, the ethanol was recovered with simple magnetic separation and centrifugation process. After 10 times recycle of PAMP, the ethanol adsorption maintained 92% of its initial adsorption capacity. Using ethanol concentration process, the ethanol concentration increased up to 197.6 g/L from 46 g/L which was 4.3 folds increase.

Selective adsorption of Ba2+ using chemically modified alginate beads with enhanced Ba2+ affinity and its application to 131Cs production

  • Kim, Jin-Hee;Lee, Seung-Kon
    • Nuclear Engineering and Technology
    • /
    • v.54 no.8
    • /
    • pp.3017-3026
    • /
    • 2022
  • The 131Cs radioisotope with a short half-life time and high average radiation energy can treat the cancer effectively in prostate brachytherapy. The typical 131Cs production processes have a separation step of the cesium from 131Ba to obtain a high specific radioactivity. Herein, we suggested a novel 131Cs separation method based on the Ba2+ adsorption of alginate beads. It is necessary to reduce the affinity of alginate beads to cesium ions for a high production yield. The carboxyl group of the alginate beads was replaced by a sulfonate group to reduce the cesium affinity while reinforcing their affinity to barium ions. The modified beads exhibited superior Ba2+ adsorption performances to native beads. In the fixed-bed column tests, the saturation time and adsorption capacity could be estimated with the Yoon-Nelson model in various injection flow rates and initial concentrations. In terms of the Cs elution, the modified alginate showed better performance (i.e., an elution over 88%) than the native alginate (i.e., an elution below 10%), indicating that the functional group modification was effective in reducing the affinity to cesium ions. Therefore, the separation of cesium from the barium using the modified alginate is expected to be an additional option to produce 131Cs.

A Kinetic Consideration on the Selective Adsorption and Molecular Recognition by Molecularly Imprinted Polymer

  • Li, Wuke;Li, Songjun;Luo, Gang;Ding, Kerong
    • Bulletin of the Korean Chemical Society
    • /
    • v.28 no.8
    • /
    • pp.1346-1352
    • /
    • 2007
  • This article presents an original work on kinetically studying the selective adsorption and recognition by molecularly imprinted polymer (MIP). With S-naproxen as template, the imprinted polymer was prepared. The result indicates that the prepared polymer shows a more complicated sorption toward S-naproxen than toward its enantiomer R-naproxen. The rate constant in the case of template appears to be a variable. There are also significant deviations from the idealized Langmuir model. Related information indicates that these, in logic, can be a result of biomimic structural and functional complements between imprint and the template, which makes the polymer capable of selectively recognizing the imprint species.