• Title/Summary/Keyword: Selective activation

Search Result 348, Processing Time 0.029 seconds

The Role of Adenosine Receptors on Acetylcholine Release in the Rat Striatum

  • Kim, Do-Kyung;Kim, Hyeon-A;Choi, Bong-Kyu
    • The Korean Journal of Physiology and Pharmacology
    • /
    • v.1 no.1
    • /
    • pp.1-12
    • /
    • 1997
  • As it has been reported that the depolarization induced acetylcholine (ACh) release is modulated by activation of presynaptic $A_1$ adenosine heteroreceptor and various evidence suggest that indicate the $A_2$ adenosine receptor is present in the striatum, this study was undertaken to delineate the role of adenosine receptors on the striatal ACh release. Slices from the rat striatum were equilibrated with $[^3H]$choline and then the release amount of the labelled product, $[^3H]$ACh, which was evoked by electrical stimulation (rectangular pulses, 3 Hz, 2 ms, 24 mA, $5\;Vcm^{-1}$, 2 min), was measured, and the influence of various agents on the evoked tritium outflow was investigated. And also, quantitative receptor autoradiography and drug-receptor binding assay were performed in order to confirm the presence and characteristics of $A_1$ and $A_2$ adenosine receptors in the rat striatum. Adenosine $(10{sim}100\;{mu}M)$ and $N^6$-cyclopentyladenosine (CPA, $1{sim}100\;{mu}M)$ decreased the $[^3H]$ACh release in a dose-dependent manner without changing the basal rate of release in the rat striatum. The reducing effects of ACh release by adenosine and CPA were abolished by 8-cyclopentyl-1,3-dipropy-Ixanthine (DPCPX, 2 ${mu}M$), a selective $A_1$, adenosine receptor antagonist, treatment. The effect of adenosine was potentiated markedly by 3,7-dimethyl-1-propargylxanthine (DMPX, 10 ${mu}M$), a specific $A_2$ adenosine receptor antagonist. 2-P-(2-carboxyethyl)phenethylamimo-5'-N- ethylcarboxamidoadenosine hydrochloride (CGS-21680C), in concentrations ranging from 0.01 to 10 ${mu}M$, a recently introduced potent $A_2$ adenosine receptor agonist, increased the $[^3H]$ACh release in a dose related fashion without changing the basal rate of release. These effects were completely abolished by DMPX $(10\;{mu}M)$. In autoradiograrhy experiments, $[^3H]$2-chloro-$N^6$-cyclopentyladenosine ($[^3H]$ CCPA) bindings were highly localized in the hippocampus and the cerebral cortex. Additionally, lower levels of binding were found in the striatum. However, $[^3H]$CGS-21680C bindings were highly localized in the striatal region with the greatest density of binding found in the caudate nucleus and putamen. Lower levels of binding were also found in the nucleus accumbens and olfactory tubercle. In drug-receptor binding assay, binding of $[^3H]$ CCPA to $A_1$ adenosine receptors of rat striatal membranes was inhibited by CPA ($K_i$ = 1.6 nM) and N-ethylcarboxamidoadenosine (NECA, $K_i$ = 12.9 nM), but not by CGS-21680C ($K_i$ = 2609.2 nM) and DMPX ($K_i$ = 19,386 nM). In contrast, $[^3H]$CGS-21680C binding to $A_2$ denosine receptors was inhibited by CGS-21680C ($K_i$ = 47.6 nM) and NECA ($K_i$ = 44.9 nM), but not by CPA ($K_i$ = 2099.2 nM) and DPCPX ($K_i$ = 19,207 nM). The results presented here suggest that both types of $A_1$ and $A_2$ adenosine heteroreceptors exist and play an important role in ACh release in the rat striatal cholinergic neurons.

  • PDF

Interaction of Forskolin with the Effect of $N^6-Cyclopentyladenosine$ on $[^3H]-Acetylcholine$ Release in Rat Hippocampus (흰쥐 해마에서 Acetylcholine 유리에 미치는 $N^6-Cyclopentyladenosine$ 및 Forskolin의 영향)

  • Choi, Bong-Kyu;Park, Hie-Man;Kang, Yeon-Wook;Kook, Young-Johng
    • The Korean Journal of Pharmacology
    • /
    • v.28 no.2
    • /
    • pp.129-136
    • /
    • 1992
  • As it has been reported that the depolarization-induced acetylcholine (ACh) release is modulated by activation of presynaptic $A_1-adenosine$ heteroreceptor in hippocampus and various lines of evidence indicate the involvement of adenylate cyclase system in $A_1-adenosine$ post-receptor mechanism in hippocampus, it was attempted to delineate the role of adenylate cyclase system in the $A_1-receptor-mediated$ control of ACh release in this study. Slices from rat hippocampus were incubated with $[^3H]-choline$ and the release of the labelled products was evoked by electrical stimulation $(3\;Hz,\;5\;Vcm^{-1},\;2\;ms,\;rectangular\;pulses)$, and the influence of various agents on the evoked tritium-outflow was investigated. $N^6-cyclopentyladenosine$ (CPA), a specific $A_1-adenosine$ receptor agonist, in concentrations ranging from 0.1 to $10\;{\mu}M$, decreased the $[^3H]-ACh$ release in a dose-dependent manner without the changes of basal rate of release. 8-cyclopentyl-1,3-dipropylxanthine $(DPCPX,\;1{\sim}10\;{\mu}M)$, a selective $A_1-receptor$ antagonist, increased the $[^3H]-ACh$ release in a dose-related fashion with slight increase of basal tritium-release. And the CPA effects were significantly inhibited by DPCPX $(2\;{\mu}M)$ pretreatment and the dose-response curve produced by CPA was shifted to the right. The responses to N-ethylmaleimide $(NEM,\;10\;&\;30\;{\mu}M)$, a SH-alkylating agent of G-protein, were characterized by increments of the evoked ACh-release and the basal release, and the CPA effect were completely abolished by NEM pretreatment. Forskolin, a specific adenylate cyclase activator, in concentrations ranging from 0.3 to $10\;{\mu}M$, increased the evoked ACh-release in a dose-dependent manner and the CPA effects were inhibited by forskolin. These results indicate that the $A_1-adenosine$ heteroreceptor plays an important role in ACh-release via nucleotide-binding protein Gi in the rat hippocampus and that the adenylate cyclase system might be participated in this process.

  • PDF

A Study on the Post-Receptor Mechanism of Adenosine Receptor on Acetylcholine Release in the Rat Hippocampus (흰쥐 해마에서 Acetylcholine 유리에 관여하는 Adenosine Receptor의 Post-Receptor 기전에 관한 연구)

  • Choi, Bong-Kyu;Oh, Jae-Hee
    • The Korean Journal of Pharmacology
    • /
    • v.30 no.3
    • /
    • pp.263-272
    • /
    • 1994
  • Since it was been reported that the depolarization-induced ACh release is inhibited by activation of presynaptic $A_1-adenosine$ heteroreceptor in hippocampus, a large body of experimental data on the post-receptor mechanism of this process has been accumulated. But, the post-receptor mechanism of presynaptic $A_1-adenosine$ receptor on the ACh release has not been clearly elucidated yet. Therefore, it was attempted to clarify the post-receptor mechanisms of the $A_1-adenosine$ receptor-mediated control of ACh release in this study. Slices from rat hippocampus were equilibrated with $^3H-choline$ and the release of the labelled products was evoked by electrical stimulation (3 Hz, 5 $VCm^{-1}$, 2ms, rectangular pulses), and the influence of various agents on the evoked tritium-outflow was investigated. Adenosine, in concentrations ranging from $0.3{\sim}300\;{\mu}M$, decreased the ACh release in a dose-dependent manner, without affecting the basal rate of release. The adenosine effects were significantly inhibited by $DPCPX\;(2\;{\mu}M)$, a selective $A_1-receptor$ antagonist. The responses to N-ethylmaleimide $(10&30{\mu}M)$, a SH-alkylating agent of G-protein, were characterized by increments of the evoked ACh-release and the basal release, and the adenosine effects were completely abolished by NEM pretreatment. PDB $(1{\sim}10\;{\mu}M)$, a specific protein kinase C (PKC) activator, increased, whereas PMB $(0.03{\sim}1\;mg)$, a PKC inhibitor, decreased the evoked ACh-release, and the adenosine effects were not affected by these agents. Nifedipine $(1\;{\mu}M)$, a $Ca^{2+}\;-channel$ blocker of dihydropyridine analogue, significantly inhibited the adenosine effect, but glibenclamide, a $K^+-channel$ blocker, did not. Finally, 8-bromo cyclic AMP $(100\;&\;300{\mu}M)$, a membrane-permeable analogue of cAMP, did not alter the ACh release, but adenosine effects were inhibited by pretreatment with large dose of 8-br-cAMP $(300\;{\mu}M)$. These results indicate that the decrement of the evoked ACh-release by $A_1-adenosine$ receptor is mediated by the G-protein, and nifedipine-sensitive $Ca^{2+}-channel$ and adenylate cyclase system are coupled partly to this effect, and that protein kinase C and glibenclamide-sensitive $K{^+}-channel$ are not involved in this process.

  • PDF

Influence of Adenosine and Magnesium on Acetylcholine Release in the Rat Hippocampus (흰쥐 해마에서 Acetylcholine 유리에 미치는 Adenosine 및 Magnesium의 영향)

  • Choi, Bong-Kyu;Yoon, Young-Bok
    • The Korean Journal of Pharmacology
    • /
    • v.29 no.2
    • /
    • pp.175-182
    • /
    • 1993
  • As it has been reported that the depolarization-induced ACh release is modulated by activation of presynaptic $A_1-adenosine$ heteroreceptor in hippocampus and various lines of evidence indicate the adenosine effect is magnesium dependent, the present study was undertaken to delineate the role of endogenus adenosine as a modulator of hippocampal acetylcholine release in this study. Slices from the rat hippocampus were equilibrated with $[^3H]-choline$ and the release of the labelled product, $[^3H]-ACh$, was evoked by electrical stimulation(3Hz, $5\;V\;cm^{-1},$ 2ms, rectangular pulses), and the influence of various agents on the evoked tritium outflow was investigated. Adenosine, in concentrations ranging from $0.3\;to\;100\;{\mu}M$, decreased the $[^3H]-ACh$ release in a dose-dependent manner without changing the basal rate of release. $DPCPX(1{\sim}10{\mu}M)$, a selective $A_1-receptor$ antagonist, increased the $[^3H]-ACh$ release in a dose-related fashion with slight increase of basal tritium release. And the effects of adenosine were significantly inhibited by $DPCPX(2{\mu}M)$ treatment. CPCA, a specific $A_2-agonist$, in concentration ranging from $0.3\;to\;30\;{\mu}M$ decreased evoked tritium outflow with increase of basal rate of tritium release, and these effects were also abolished by $DPCPX(2{\mu}M)$ pretreatment. But, $CGS(0.1{\sim}10{\mu}M)$, a recently introduced potent $A_2-agonist$, did not alter the evoked tritium outflow. When the magnesium concentration of the medium was reduced to 0 mM, there was no change in evoked ACh release by adenosine. In contrast, increasing the magnesium concentration to 4 mM, the inhibitory effects of adenosine were significantly potentiated. These results indicate that $A_1-adenosine$ heteroreceptor is involved in ACh-release in the rat hippocampus and the inhibitory effects of adenosine mediated by $A_1-receptor$ is magnesium-dependent.

  • PDF

Role of p-38 MAP Kinase in apoptosis of hypoxia-induced osteoblasts (저산소 상태로 인한 조골세포 고사사기전에서 p-38 MAP kinase의 역할에 관한 연구)

  • Yoon, Jeong-Hyeon;Jeong, Ae-Jin;Kang, Kyung-Hwa;Kim, Sang-Cheol
    • The korean journal of orthodontics
    • /
    • v.33 no.3 s.98
    • /
    • pp.169-183
    • /
    • 2003
  • Tooth movement by orthodontic force effects great tissue changes within the periodontium, especially by shifting the blood flow in the pressure side and resulting in a hypoxic state of low oxygen tension. The aim of this study is to elucidate the possible mechanism of apoptosis in response to hypoxia in MC3T3El osteoblasts, the main cells in bone remodeling during orthodontic tooth movement. MC3T3El osteoblasts under hypoxic conditions ($2\%$ orygen) resulted in apoptosis in a time-dependent manner as estimated by DNA fragmentation assay and nuclear morphology stained with fluorescent dye, Hoechst 33258. Pretreatment with Z-VAD-FMK, a pancaspase inhibitor, or Z-DEVD-CHO, a specific caspase-3 inhibitor, completely suppressed the DNA ladder in response to hypoxia. An increase in caspase-3-like protease (DEVDase) activity was observed during apoptosis, but no caspase-1 activity (YVADase) was detected. To confirm what caspases are involved in apoptosis, Western blot analysis was performed using anti-caspase-3 or -6 antibodies. The 10-kDa protein, corresponding to the active products of caspase-3, and the 10-kDa protein of the active protein of caspase-6 were generated in hypoxia-challenged cells in which the processing of the full length form of caspase-3 and -6 was evident. While a time course similar to this caspase-3 and -6 activation was evident, hypoxic stress caused the cleavage of lamin A, which was typical of caspase-6 activity. In addition, the stress elicited the release of cytochrome c into the cytosol during apoptosis. Furthermore, we observed that pre-treatment with SB203580, a selective p38 mitogen activated protein kinase inhibitor, attenuated the hypoxia-induced apoptosis. The addition of SB203S80 suppressed caspase-3 and -6-like protease activity by hypoxia up to $50\%$. In contrast, PD98059 had no effect on the hypoxia-induced apoptosis. To confirm the involvement of MAP kinase, JNK/SAPK, ERK, or p38 kinase assay was performed. Although p38 MAPK was activated in response to hypoxic treatment, the other MAPK -JNK/SAPK or ERK- was either only modestly activated or not at all. These results suggest that p38 MAPK is involved in hypoxia-induced apoptosis in MC3T3El osteoblasts.

Implicit Distinction of the Race Underlying the Perception of Faces by Event-Related fMRI (Event-related 기능적 MRI 영상을 통한 얼굴인식과정에서 수반되는 무의식적인 인종구별)

  • Kim Jeong-Seok;Kim Bum-Soo;Jeun Sin-Soo;Jung So-Lyung;Choe Bo-Young
    • Investigative Magnetic Resonance Imaging
    • /
    • v.9 no.1
    • /
    • pp.43-49
    • /
    • 2005
  • A few studies have shown that the function of fusiform face area is selectively involved in the perception of faces including a race difference. We investigated the neural substrates of the face-selective region called fusiform face area in the ventral occipital-temporal cortex and same-race memory superiority in the fusiform face area by the event-related fMRI. In our fMRI study, subjects (Oriental-Korean) performed the implicit distinction of the race while they consciously made familiar-judgments, regardless of whether they considered a face as Oriental-Korean or European-American. For race distinction as an implicit task, the fusiform face areas (FFA) and the right parahippocampal gyrus had a greater response to the presentation of Oriental-Korean faces than for the European-American faces, but in the conscious race distinction between Oriental-Korean and European-American faces, there was no significant difference observed in the FFA. These results suggest that different activation in the fusiform regions and right parahippocampal gyrus resulting from superiority of same-race memory could have implicitly taken place by the physiological processes of face recognition.

  • PDF

A Study on the Post-Receptor Mechanism of Adenosine Receptor on Norepinephrine Release in the Rat Hippocampus (흰쥐 해마에서 Norepinephrine 유리에 미치는 Adenosine Receptor의 Post-Receptor 기전에 관한 연구)

  • Choi, Bong-Kyu;Kim, Do-Kyung;Yang, Kyung-Moo
    • The Korean Journal of Pharmacology
    • /
    • v.32 no.1
    • /
    • pp.1-11
    • /
    • 1996
  • Since it has been reported that the depolarization-induced norepinephrine (NE) release is inhibited by activation of presynaptic $A_1-adenosine$ heteroreceptor in hippocampus, a large body of experimental data on the post-receptor mechanism of this process has been accumulated. But, the post-receptor mechanism of presynaptic $A_1-adenosine$ receptor on the NE release has not been clearly elucidated yet. Therefore, it was attempted to clarify the post-receptor mechanisms of the $A_1-adenosine$ receptor-mediated control of NE release in this study. Slices from rat hippocampus were equilibrated with $^3H-norepinephrine$ and the release of the labelled products was evoked by electrical stimulation (3 Hz, 5 $Vcm^{-1}$, 2 ms, rectangular pulses), and the influence of various agents on the evoked tritium-outflow was investigated. Adenosine, in concentrations ranging from $1{\sim}30{\mu}M$, decreased the NE release in a dose-dependent manner, without affecting the basal rate of release. The adenosine effects were significantly inhibited by 8-cyclopentyl-1,3-dipropylxanthine (DPCPX, $2{\mu}M$), a selective $A_1-receptor$ antagonist. The responses to N-ethylmaleimide (NEM, 10 & $30{\mu}M$), a SH-alkylating agent of G-protein, were characterized by increments of the evoked NE-release and the basal release, and the adenosine effects were completely abolished by NEM pretreatment. $4{\beta}-Phorbol$ 12,13-dibutyrate (PDB, $1{\mu}M$), a specific protein kinase C (PKC) activator, increased the evoked NE release, whereas polymyxin B sulfate (PMB,0.1 mg), a PKC inhibitor, decreased the release, and the adenosine effects were inhibited by these agents. Nifedipine $(1{\mu}M)$, a $Ca^{2+}-channel$ blocker of dihydropyridine analogue, did not affect the adenosine effect. Tetraethylammonium (TEA, 3 mM) increased the evoked NE release, and inhibited the adenosine effects, but glibenclamide, a ATP dependent $K^+-channel$ blocker, did not. Finally, 8-bromo cyclic AMP (100 & $300{\mu}M$), a membrane-permeable analogue of cAMP, did not alter the NE release, but adenosine effects were inhibited by pretreatment with 8br-cAMP. These results suggest that the decrement of the evoked NE-release by $A_1-adenosine$ receptor is mediated by the C-protein, which is coupled to protein kinase C, adenylate cyclase system and TEA sensitive $K^+-channel$, and that nifedipine-sensitive $Ca^{2+}-channel$ and glibenclamide-sensitive $K^+-channel$ are not involved in this process.

  • PDF

Mechanism Underlying a Proteasome Inhibitor, Lactacystin-Induced Apoptosis on SCC25 Human Tongue Squamous Cell Carcinoma Cells (사람혀편평상피세포암종세포에서 proteasome 억제제인 lactacystin에 의해 유도된 세포자멸사의 기전에 대한 연구)

  • Baek, Chul-Jung;Kim, Gyoo-Cheon;Kim, In-Ryoung;Lee, Seung-Eun;Kwak, Hyun-Ho;Park, Bong-Soo;Tae, Il-Ho;Ko, Myung-Yun;Ahn, Yong-Woo
    • Journal of Oral Medicine and Pain
    • /
    • v.34 no.3
    • /
    • pp.261-276
    • /
    • 2009
  • Lactacystin, a microbial natural product synthesized by Streptomyces, has been commonly used as a selective proteasome inhibitor in many studies. Proteasome inhibitors is known to be preventing the proliferation of cancer cells in vivo as well as in vitro. Furthermore, proteasome inhibitors, as single or combined with other anticancer agents, are suggested as a new class of potential anticancer agents. This study was undertaken to examine in vitro effects of cytotoxicity and growth inhibition, and the molecular mechanism underlying induction of apoptosis in SCC25 human tongue sqaumous cell carcinoma cell line treated with lactacystin. The viability of SCC25 cells, human normal keratinocytes (HaCaT cells) and human gingiva fibroblasts (HGF-1 cells), and the growth inhibition of SCC25 cells were assessed by MTT assay and clonogenic assay respectively. The hoechst staining, hemacolor staining and TUNEL staining were conducted to observe SCC25 cells undergoing apoptosis. SCC25 cells were treated with lactacystin, and Western blotting, immunocytochemistry, confocal microscopy, FAScan flow cytometry, MMP activity, and proteasome activity were performed. Lactacystin treatment of SCC25 cells resulted in a time- and does-dependent decrease of cell viability and a does-dependent inhibition of cell growth, and induced apoptotic cell death. Interestingly, lactacytin remarkably revealed cytotoxicity in SCC25 cells but not normal cells. And tested SCC25 cells showed several lines of apoptotic manifestation such as nuclear condensation, DNA fragmentation, the reduction of MMP and proteasome activity, the decrease of DNA contents, the release of cytochrome c into cytosol, the translocation of AIF and DFF40 (CAD) onto nuclei, the up-regulation of Bax, and the activation of caspase-7, caspase-3, PARP, lamin A/C and DFF45 (ICAD). Flow cytometric analysis revealed that lactacystin resulted in G1 arrest in cell cycle progression which was associated with up-regulation in the protein expression of CDK inhibitors, $p21^{WAF1/CIP1}$ and $p27^{KIP1}$. We presented data indicating that lactacystin induces G1 cell cycle arrest and apoptois via proteasome, mitochondria and caspase pathway in SCC25 cells. Therefore our data provide the possibility that lactacystin could be as a novel therapeutic strategy for human tongue squamous cell carcinoma.