• Title/Summary/Keyword: Selective Combining

Search Result 95, Processing Time 0.029 seconds

Surface Densification Coupled with Higher Density Processes Targeting High-performance Gearing

  • Hanejko, Francis;Rawlings, Arthur;King, Patrick;Poszmik, George
    • Proceedings of the Korean Powder Metallurgy Institute Conference
    • /
    • 2006.09b
    • /
    • pp.738-739
    • /
    • 2006
  • This paper will describe a powder and processing method that facilitates single press-single sintered densities approaching $7.5g/cm^3$. At this sintered density, mechanical properties of the powder metal (P/M) component are significantly improved over current P/M technologies and begin to approach the performance of wrought steels. High performance gears have the added requirement of rolling contact fatigue durability that is dependent upon localized density and thermal processing. Combining high density processing of engineered P/M materials with selective surface densification enables powder metal components to achieve rolling contact fatigue durability and mechanical property performance that satisfy the performance requirements of many high strength automotive transmission gears. Data will be presented that document P/M part performance in comparison to conventional wrought steel grades.

  • PDF

A Novel Pulse-Width and Amplitude Modulation (PWAM) Control Strategy for Power Converters

  • Ghoreishy, Hoda;Varjani, Ali Yazdian;Farhangi, Shahrokh;Mohamadian, Mustafa
    • Journal of Power Electronics
    • /
    • v.10 no.4
    • /
    • pp.374-381
    • /
    • 2010
  • Typical power electronic converters employ only pulse width modulation (PWM) to generate specific switching patterns. In this paper, a novel control strategy combining both pulse-width and amplitude modulation strategies (PWAM) has been proposed for power converters. The Pulse Amplitude Modulation (PAM), used in communication systems, has been applied to power electronic converters. This increases the degrees of freedom in eliminating or mitigating harmonics when compared to the conventional PWM strategies. The role of PAM in the novel PWAM strategy is based on the control of the converter's dc sources values. Software implementation of the conventional PWM and the PWAM control strategies has been applied to a five-level inverter for mitigating selective harmonics. Results show the superiority of the proposed strategy from the THD point of view along with a reduction in the inverter power dissipation.

Outage Performance of Selective Dual-Hop MIMO Relaying with OSTBC and Transmit Antenna Selection in Rayleigh Fading Channels

  • Lee, In-Ho;Choi, Hyun-Ho;Lee, Howon
    • Journal of Information Processing Systems
    • /
    • v.13 no.5
    • /
    • pp.1071-1088
    • /
    • 2017
  • For dual-hop multiple-input multiple-output (MIMO) decode-and-forward relaying systems, we propose a selective relaying scheme that uses orthogonal space-time block code (OSTBC) and transmit antenna selection with maximal-ratio combining (TAS/MRC) or vice versa at the first and second hops, respectively. The aim is to achieve an asymptotically identical performance to the dual-hop relaying system with only TAS/MRC, while requiring lower feedback overhead. In particular, we give the selection criteria based on the antenna configurations and the average channel powers for the first and second hops, assuming Rayleigh fading channels. Also, the numerical results are shown for the outage performance comparison between the dual-hop DF relaying systems with the proposed scheme, only TAS/MRC, and only OSTBC.

On the Performance of Multi-User 2PPM-TH-UWB SIMO Systems in Multipath Channels

  • Baek, Sun-Young;Kang, Yun-Jeong;Kim, Sang-Choon
    • Journal of information and communication convergence engineering
    • /
    • v.7 no.3
    • /
    • pp.286-291
    • /
    • 2009
  • In this paper, the performance of ultra-wideband (UWB) single input multiple output (SIMO) systems to achieve high data rate communications is studied in dense multipath environments. The effects of spatial and temporal diversities on the performance of multi-user time-hopping UWB systems using binary pulse position modulation (2PPM) are analyzed. The reduced-complexity Rake receivers based on the selective combining (called SRake) and partial combining (called PRake) are considered. The theoretical and simulation results show that the BER performance of the UWB system can be enhanced as the number of array elements and/or Rake fingers increases. Moreover, we observe that SRake is more effective for the IR-UWB systems to achieve a good BER performance, as compared with PRake.

Evaluation on the Selective Combining for the Detection of M-ary DPSK Signals over Nakagami Fading Channels

  • Na, Seung-Gwan;Kim, Chang-Hwan;Jin, Yong-Ok
    • Journal of electromagnetic engineering and science
    • /
    • v.7 no.2
    • /
    • pp.74-82
    • /
    • 2007
  • The performances of M-ary DPSK(MDPSK) for diversity reception theoretically are derived, using an L-branch selection combining(SC) in frequency-nonselective slow Nakagami fading channels. For integer values of the Nakagami fading parameter m, An exact closed-form symbol error rate(SER) multichannel performance that can be easily evaluated via numerical integration is presented. Finally, we compare these analyses with numerical analyses with integral-form expressions for the performance of MDPSK signals under the effect of two-branch SC diversity over slow and nonselective Rician fading channels with additive white Gaussian noise(AWGN).

Diversity Combining Techniques for DPSK Signals in Nakagami Fading Channels (나카가미 페이딩 채널에서 DPSK 신호의 다이버시티 합성기법)

  • 김창환;한영열
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.25 no.1A
    • /
    • pp.34-42
    • /
    • 2000
  • In this paper, the closed form expression for the average bit error probability(BER) is derived for diversity reception using an L-branch maximal ratio combining(MRC) system which has same fading index and different fading index. Also, the BER to have same average power and Nakagami m-distribution for a generalized selection combining(SC) is derived, whereby the signal with the largest amplitude is selected from the original diversity branches in the channel, the order statistics is applied. Especially, when L is 1 in a selective diversity, the derived expression leads to that of DPSK in which SC is not applied in Nakagami fading. Changing the diversity branch L and fading index m, we compare the performance of MRC and SC.

  • PDF

A Study on the MRC and EGC in Nakagami-m Fading Channel (나까카미-m 페이딩 채널에서 최대비합성과 동이득합성에 관한 연구)

  • Lee, Kwan-Houng;Lee, Myung-Ho
    • Journal of the Korea Society of Computer and Information
    • /
    • v.11 no.5 s.43
    • /
    • pp.195-201
    • /
    • 2006
  • In multicarrier code division multiple access(MC-CDMA), the total system bandwidth is divided into a number of sub-bands, where each subband may use direct-sequence(DS) spreading and each subband signal is transmitted using a subcarrier frequency. In this paper, the system performance analysis of MC-CDMA using to gain combining(EGC) and maximal ratio combining(MRC) method over frequency selective Nakagami-m fading channel is analyzed. In the proposed system, a data sequence is serial-to-parallel converted, and MC-CDMA is used on each of the parallel data streams. The data streams are spread at both the symbol fraction level and at the chip level by the transmitter. In this paper, the compare to analysis,two standard diversity combining techniques, EGC and MRC, The good performance of system using to MRC more than EGC

  • PDF

STBC SC-FDE based on LS-Algorithm for Fixed Broadband Wireless Access System

  • Kim Han Kyong;Hwang Ho Seon;Baik Heung Ki
    • Proceedings of the IEEK Conference
    • /
    • 2004.08c
    • /
    • pp.596-599
    • /
    • 2004
  • We propose an Alamouti-like scheme for combining space-time block coding with single-carrier frequency-domain equalization(SC-FDE) in fixed broadband wireless access environment. With two transmit antennas, the scheme is shown to achieve significant diversity gains at low complexity over frequency-selective fading channels

  • PDF

Multiuser Detection for Multicarrier DS/CDMA System

  • Park, Wan;Kim, Jin-Young
    • Proceedings of the IEEK Conference
    • /
    • 2000.06a
    • /
    • pp.201-204
    • /
    • 2000
  • In this paper, a new multiuser detector combining multicarrier and decorrelating detection schemes is proposed and analyzed in a frequency selective Rayleigh fading channel. The bit error probability is derived and compared with that of the conventional decorrelating detector. From the numerical results, it is shown that the proposed detector achieves better BER performance and lower computational complexity than those of the conventional decorrelating detector.

  • PDF

PAPR Reduction Method Using SLM-based WHT and DSI (SLM 기반 Walsh Hadamard 변환 및 DSI 기법을 이용한 PAPR 저감 기법)

  • Kim Sang-Woo;Kim Namil;Ryu Heung-Gyoon
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.16 no.11 s.102
    • /
    • pp.1147-1154
    • /
    • 2005
  • In this paper, we propose some PAPR(Peak to Average Power Ratio) reduction methods using WHT(Walsh Hadamard Transform) to reduce high PAPR generated in OFDM system because of multi carrier modulation. These proposed methods are the methods which has additional PAPR reduction performance without a loss of bandwidth efficiency and a large increment of calculation complexity than common PAPR reduction methods by combining the WHT with some common methods. In this paper, we propose two PAPR reduction methods made by combining a SLM(Selective Mapping) and DSI(Dummy Sequence Insertion) with a WHT. From simulation result, we can find that the PAPR reduction methods using a WHT can get about 1 dB additional PAPR reduction performance than common PAPR reduction methods; they are SLM and DSI. And, because our proposed methods have not only PAPR reduction effect, but also frequency diversity effect, more stabile data transmission is possible in nonlinear HPA and multipath fading channel.