• Title/Summary/Keyword: Selection efficiency

Search Result 1,643, Processing Time 0.03 seconds

Study for the selection of the optimal placement for STATCOM, using IPLAN (IPLAN을 이용한 STATCOM의 최적위치선정에 관한 연구)

  • Kim Won Kyu;Gu Min Yan;Baek Young Sik
    • Proceedings of the KIEE Conference
    • /
    • summer
    • /
    • pp.171-173
    • /
    • 2004
  • This paper presents the selection of optimal placement for STATCOM (Static synchronous Compensator) which is one of the FACTS (Flexible Alternating Current Transmission System) devices, considering line contingency. Line contingency ranking is gotten by using sensitivity of load margin. According to line contingency ranking line contingency was considered. And IOP (Index for selecting optimal Placement of STATCOM) is calculated by the variation of each bus's reactive mum for several line contingencies. The bus where has the biggest value of lOP is the most optimal placement to install STATCOM for voltage stability. IPLAN is used to program this part which get IOP. This study is carried out on the modified IEEE14 Bus Test System to confirm the efficiency of the method.

  • PDF

Learning Algorithms in AI System and Services

  • Jeong, Young-Sik;Park, Jong Hyuk
    • Journal of Information Processing Systems
    • /
    • v.15 no.5
    • /
    • pp.1029-1035
    • /
    • 2019
  • In recent years, artificial intelligence (AI) services have become one of the most essential parts to extend human capabilities in various fields such as face recognition for security, weather prediction, and so on. Various learning algorithms for existing AI services are utilized, such as classification, regression, and deep learning, to increase accuracy and efficiency for humans. Nonetheless, these services face many challenges such as fake news spread on social media, stock selection, and volatility delay in stock prediction systems and inaccurate movie-based recommendation systems. In this paper, various algorithms are presented to mitigate these issues in different systems and services. Convolutional neural network algorithms are used for detecting fake news in Korean language with a Word-Embedded model. It is based on k-clique and data mining and increased accuracy in personalized recommendation-based services stock selection and volatility delay in stock prediction. Other algorithms like multi-level fusion processing address problems of lack of real-time database.

Relay Node Selection Scheme for EH-WSN Routing considering Data Urgency (EH-WSN 라우팅에서 데이터의 긴급성을 고려한 중계노드 선택기법)

  • Kang, Min-Seung;Park, Hyung-Kun
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.24 no.8
    • /
    • pp.1113-1116
    • /
    • 2020
  • In the EH-WSN(Energy Harvesting Wireless Sensor Network), the routing protocol must consider the power condition of nodes such as residual power and energy harvesting rate. Many EH-WSN studies have emphasized the power aspect and make the urgency of sensed data less important. However, in applications such as environmental monitoring, stability and latency become more important issues than power efficiency for urgent data. In this paper, we designed a routing protocol that can set path according to data urgency. To this end, relay nodes are determined considering the urgency of date. Nodes with poor power do not participate in routing when normal data is generated, so that urgent data can be transmitted reliably with low latency. The performance of the proposed routing protocol is analyzed by computer simulation.

Case Study of Animation Production using 'MetaHuman'

  • Choi, Chul Young
    • International journal of advanced smart convergence
    • /
    • v.11 no.3
    • /
    • pp.150-156
    • /
    • 2022
  • Recently, the use of Unreal Engine for animation production is increasing. In this situation, Unreal Engine's 'MetaHuman Creator' helps make it easier to apply realistic characters to animation. In this regard, we tried to produce animations using 'MetaHuman' and verify the effectiveness and differences from the animation production process using only Maya software. To increase the efficiency of the production process, the animation process was made with Maya software. We tried to import animation data from Unreal Engine and go through the process of making animations, and try to find out if there are any problems. And we tried to compare animations made with realistic 'MetaHuman' characters and animation works using cartoon-type characters. The use of the same camera lens in realistic character animations and cartoon character animations produced based on the same scenario was judged to be the cause of the lack of realistic animation screen composition. The analysis revealed that a different approach from the existing animation camera lens selection is required for the selection of the camera lens in the production of realistic animation.

Enhanced MPR Selection Strategy for Multicast OLSR

  • Matter, Safaa S.;Al Shaikhli, Imad F.;Hashim, Aisha H.A.;Ahmed, Abdelmoty M.;Khattab, Mahmoud M.
    • International Journal of Computer Science & Network Security
    • /
    • v.22 no.10
    • /
    • pp.137-144
    • /
    • 2022
  • Wireless community networks (WCNs) are considered another form of ownership of internet protocol (IP) networks, where community members manage and own every piece of equipment in a decentralized way, and routing for traffic is done in a cooperative manner. However, the current routing protocols for WCNs suffer from stability and scalability issues. In this paper, an enhanced routing protocol is proposed based on the optimized link state routing (OLSR) protocol to meet the standards of efficiency in terms of stability and scalability. The proposed routing protocol is enhanced through two phases: multicasting expansion and multipoint relay (MPR) selection based on an analytical hierarchical process (AHP). The experimental results demonstrate that the proposed routing protocol outperforms the OLSR protocol in terms of network control overhead and packet delivery ratio by 18% and 1% respectively.

Selection Method for Optimal Shop Floor Control According to Manufacturing Environment (생산환경 변화에 따른 최적 Material Flow Control 선택방법)

  • Park, Sang Geun;Park, Sung Ho;Ha, Chunghun
    • Journal of Korean Society of Industrial and Systems Engineering
    • /
    • v.36 no.2
    • /
    • pp.81-90
    • /
    • 2013
  • Material flow control (MFC) is a kind of operational policy to control of the movement of raw materials, components, and products through the manufacturing lines. It is very important because it varies throughput, line cycle time, and work-in-process (WIP) under the same manufacturing environments. MFC can be largely categorized into three types such as Push, Pull, and Hybrid. In this paper, we set various manufacturing environments to compare five existing MFC mechanisms: Push, Pull, and Hybrid (CONWIP, Gated MaxWIP, Critical WIP Loops, etc). Three manufacturing environments, manufacturing policies (make to stock and make to order), demand (low, medium, high), and line balancing (balanced, unbalanced, and highly unbalanced) are considered. The MFCs are compared in the point of the five functional efficiencies and the proposed compounded efficiency. The simulation results shows that the Push is superior in the functional efficiency and GMWIP is superior in the compounded efficiency.

Development of 50kW High Efficiency Modular Fast Charger for Both EV and NEV (EV와 NEV 겸용 50kW급 고효율 모듈형 급속충전기 개발)

  • Kim, Min-Jae;Kim, Yeon-Woo;Prabowo, Yos;Choi, Se-Wan
    • The Transactions of the Korean Institute of Power Electronics
    • /
    • v.21 no.5
    • /
    • pp.373-380
    • /
    • 2016
  • In this paper, a 50-kW high-efficiency modular fast charger for both electric vehicle (EV) and neighborhood electric vehicle (NEV) is proposed. The proposed fast charger consists of five 10-kW modules to achieve fault tolerance, ease of thermal management, and reduce component stress. Three-level topologies for both AC-DC and DC-DC converters are employed to use 600V MOSFET, resulting in ease of component selection and increase in switching frequency. The proposed three-level DC-DC converter with coupled inductor and its hybrid switching method can reduce the circulating current under wide output voltage range. A 50-kW prototype of the proposed fast charger was developed and tested to verify the validity of the proposed concept. Experimental results show that the proposed fast charger achieves a rated efficiency of 95.2% and a THD of less than 3%.

Resource Allocation and EE-SE Tradeoff for H-CRAN with NOMA-Based D2D Communications

  • Wang, Jingpu;Song, Xin;Dong, Li
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.14 no.4
    • /
    • pp.1837-1860
    • /
    • 2020
  • We propose a general framework for studying resource allocation problem and the tradeoff between spectral efficiency (SE) and energy efficiency (EE) for downlink traffic in power domain-non-orthogonal multiple access (PD-NOMA) and device to device (D2D) based heterogeneous cloud radio access networks (H-CRANs) under imperfect channel state information (CSI). The aim is jointly optimize radio remote head (RRH) selection, spectrum allocation and power control, which is formulated as a multi-objective optimization (MOO) problem that can be solved with weighted Tchebycheff method. We propose a low-complexity algorithm to solve user association, spectrum allocation and power coordination separately. We first compute the CSI for RRHs. Then we study allocating the cell users (CUs) and D2D groups to different subchannels by constructing a bipartite graph and Hungrarian algorithm. To solve the power control and EE-SE tradeoff problems, we decompose the target function into two subproblems. Then, we utilize successive convex program approach to lower the computational complexity. Moreover, we use Lagrangian method and KKT conditions to find the global optimum with low complexity, and get a fast convergence by subgradient method. Numerical simulation results demonstrate that by using PD-NOMA technique and H-CRAN with D2D communications, the system gets good EE-SE tradeoff performance.

Genetic Studies on Production Efficiency Traits in Hariana Cattle

  • Dhaka, S.S.;Chaudhary, S.R.;Pander, B.L.;Yadav, A.S.;Singh, S.
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.15 no.4
    • /
    • pp.466-469
    • /
    • 2002
  • The data on 512 Hariana cows, progeny of 20 sires calved during period from 1974 to 1993 maintained at Government Livestock Farm, Hisar were considered for the estimation of genetic parameters. The means for first lactation milk yield (FLY), wet average (WA), first lactation peak yield (FPY), first lactation milk yield per day of first calving interval (MCI) and first lactation milk yield per day of age at second calving (MSC) were 1,141.58 kg, 4.19 kg/day, 6.24 kg/day, 2.38 kg/day and 0.601 kg/day, respectively. The effect of period of calving was significant (p<0.05) on WA, FPY and MCI while the effect of season of calving was significant only on WA. Monsoon calvers excelled in performance for all the production efficiency traits. The effect of age at first calving (linear) was significant on all the traits except on MCI. Estimates of heritabilty for all the traits were moderate and ranged from 0.255 to 0.333 except for WA (0.161). All the genetic and phenotypic correlations among different production efficiency traits were high and positive. It may be inferred that selection on the basis of peak yield will be more effective as the trait is expressed early in life and had reasonably moderate estimate of heritability.

An energy-efficiency approach for bidirectional amplified-and-forward relaying with asymmetric traffic in OFDM systems

  • Jia, Nianlong;Feng, Wenjiang;Zhong, Yuanchang;Kang, Hong
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.8 no.11
    • /
    • pp.4087-4102
    • /
    • 2014
  • Two-way relaying is an effective way of improving system spectral efficiency by making use of physical layer network coding. However, energy efficiency in OFDM-based bidirectional relaying with asymmetric traffic requirement has not been investigated. In this study, we focused on subcarrier transmission mode selection, bit loading, and power allocation in a multicarrier single amplified-and-forward relay system. In this scheme, each subcarrier can operate in two transmission modes: one-way relaying and two-way relaying. The problem is formulated as a mixed integer programming problem. We adopt a structural approximation optimization method that first decouples the original problem into two suboptimal problems with fixed subcarrier subsets and then finds the optimal subcarrier assignment subsets. Although the suboptimal problems are nonconvex, the results obtained for a single-tone system are used to transform them to convex problems. To find the optimal subcarrier assignment subsets, an iterative algorithm based on subcarrier ranking and matching is developed. Simulation results show that the proposed method can improve system performance compared with conventional methods. Some interesting insights are also obtained via simulation.