• Title/Summary/Keyword: Selection Process

Search Result 3,368, Processing Time 0.032 seconds

A Step towards the Improvement in the Performance of Text Classification

  • Hussain, Shahid;Mufti, Muhammad Rafiq;Sohail, Muhammad Khalid;Afzal, Humaira;Ahmad, Ghufran;Khan, Arif Ali
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.13 no.4
    • /
    • pp.2162-2179
    • /
    • 2019
  • The performance of text classification is highly related to the feature selection methods. Usually, two tasks are performed when a feature selection method is applied to construct a feature set; 1) assign score to each feature and 2) select the top-N features. The selection of top-N features in the existing filter-based feature selection methods is biased by their discriminative power and the empirical process which is followed to determine the value of N. In order to improve the text classification performance by presenting a more illustrative feature set, we present an approach via a potent representation learning technique, namely DBN (Deep Belief Network). This algorithm learns via the semantic illustration of documents and uses feature vectors for their formulation. The nodes, iteration, and a number of hidden layers are the main parameters of DBN, which can tune to improve the classifier's performance. The results of experiments indicate the effectiveness of the proposed method to increase the classification performance and aid developers to make effective decisions in certain domains.

Conditional Signal-Acquisition Parameter Selection for Automated Satellite Laser Ranging System

  • Kim, Simon;Lim, Hyung-Chul;Kim, Byoungsoo
    • Journal of Astronomy and Space Sciences
    • /
    • v.36 no.2
    • /
    • pp.97-103
    • /
    • 2019
  • An automated signal-acquisition method for the NASA's space geodesy satellite laser ranging (SGSLR) system is described as a selection of two system parameters with specified probabilities. These parameters are the correlation parameter: the minimum received pulse number for a signal-acquisition and the frame time: the minimum time for the correlation parameter. The probabilities specified are the signal-detection and false-acquisition probabilities to distinguish signals from background noise. The steps of parameter selection are finding the minimum set of values by fitting a curve and performing a graph-domain approximation. However, this selection method is inefficient, not only because of repetition of the entire process if any performance values change, such as the signal and noise count rate, but also because this method is dependent upon system specifications and environmental conditions. Moreover, computation is complicated and graph-domain approximation can introduce inaccuracy. In this study, a new method is proposed to select the parameters via a conditional equation derived from characteristics of the signal-detection and false-acquisition probabilities. The results show that this method yields better efficiency and robustness against changing performance values with simplicity and accuracy and can be easily applied to other satellite laser ranging (SLR) systems.

Sampling Set Selection Algorithm for Weighted Graph Signals (가중치를 갖는 그래프신호를 위한 샘플링 집합 선택 알고리즘)

  • Kim, Yoon Hak
    • The Journal of the Korea institute of electronic communication sciences
    • /
    • v.17 no.1
    • /
    • pp.153-160
    • /
    • 2022
  • A greedy algorithm is proposed to select a subset of nodes of a graph for bandlimited graph signals in which each signal value is generated with its weight. Since graph signals are weighted, we seek to minimize the weighted reconstruction error which is formulated by using the QR factorization and derive an analytic result to find iteratively the node minimizing the weighted reconstruction error, leading to a simplified iterative selection process. Experiments show that the proposed method achieves a significant performance gain for graph signals with weights on various graphs as compared with the previous novel selection techniques.

Factors Affecting Online Hotel Selection Behavior of Domestic Tourists: An Empirical Study from Vietnam

  • LE, Ngan Ngoc Kim;BUI, Bao Trong Tien
    • The Journal of Asian Finance, Economics and Business
    • /
    • v.9 no.5
    • /
    • pp.187-199
    • /
    • 2022
  • The purpose of this study was to offer a new conceptual framework based on a combination of the TPB model, the TAM model, and two additional constructs consisting of eWOM and pricing value called the E-P-TAM-TPB model, and to assess the model's implications on hotel selection behavior. This study empirically examines the E-P-TAM-TPB model to evaluate and validate domestic tourists' online hotel booking intentions by using the partial least squares structural equation modeling (PLS-SEM) approach. The data was collected from 355 domestic tourists who booked the room via the hotel website. The major findings of this study indicated that the E-P-TAM-TPB model has a positive significant influence on online hotel selection behavior. The results revealed that all proposed hypotheses were declared supported. Future studies should build on the framework by incorporating potential moderators to better understand how different groups of customers behave online in different segments of the hospitality industry. Managers must not only develop an easy booking process but also provide price value information to attract or impress clients. Tourists can compare room rates with other hotel websites and OTAs.

Efficient Sampling of Graph Signals with Reduced Complexity (저 복잡도를 갖는 효율적인 그래프 신호의 샘플링 알고리즘)

  • Kim, Yoon Hak
    • The Journal of the Korea institute of electronic communication sciences
    • /
    • v.17 no.2
    • /
    • pp.367-374
    • /
    • 2022
  • A sampling set selection algorithm is proposed to reconstruct original graph signals from the sampled signals generated on the nodes in the sampling set. Instead of directly minimizing the reconstruction error, we focus on minimizing the upper bound on the reconstruction error to reduce the algorithm complexity. The metric is manipulated by using QR factorization to produce the upper triangular matrix and the analytic result is presented to enable a greedy selection of the next nodes at iterations by using the diagonal entries of the upper triangular matrix, leading to an efficient sampling process with reduced complexity. We run experiments for various graphs to demonstrate a competitive reconstruction performance of the proposed algorithm while offering the execution time about 3.5 times faster than one of the previous selection methods.

An Analytic Hierarchy Process based Decision Support System for Selecting Foundation Practice (계층분석법 기반의 기초공법 선정 의사결정지원시스템)

  • Lee, Chung-Hyun;Jeong, Keun-Chae
    • Korean Journal of Construction Engineering and Management
    • /
    • v.13 no.1
    • /
    • pp.129-139
    • /
    • 2012
  • It is one of the most important decision making problems to select the adequate foundation practice for the downtown construction project. However the foundation practice has not been selected systematically yet by considering various construction field conditions in many projects. The foundation practice is often informally selected on the basis of only past experiences and skilled engineer's opinion. For making the selection process systematically, in this study, we propose a decision support system (DSS) for selecting foundation practices based on the Analytic Hierarchy Process (AHP) and the Preference Function (PF). In the proposed DSS, the AHP is used for making the selection process more reasonable and the PF is used for considering the decision maker's preference. To validate the proposed DSS, we apply the proposed DSS to the pre-performed construction projects. The application results show that the proposed DSS gives the same foundation practices with the implemented foundation practices that the skilled foundation engineers select after carefully analyzing construction field conditions. The proposed DSS can be used as a useful tool for making decisions to select the foundation practice in the construction fields.

Comparative Study of Estimation Methods of the Endpoint Temperature in Basic Oxygen Furnace Steelmaking Process with Selection of Input Parameters

  • Park, Tae Chang;Kim, Beom Seok;Kim, Tae Young;Jin, Il Bong;Yeo, Yeong Koo
    • Korean Journal of Metals and Materials
    • /
    • v.56 no.11
    • /
    • pp.813-821
    • /
    • 2018
  • The basic oxygen furnace (BOF) steelmaking process in the steel industry is highly complicated, and subject to variations in raw material composition. During the BOF steelmaking process, it is essential to maintain the carbon content and the endpoint temperature at their set points in the liquid steel. This paper presents intelligent models used to estimate the endpoint temperature in the basic oxygen furnace (BOF) steelmaking process. An artificial neural network (ANN) model and a least-squares support vector machine (LSSVM) model are proposed and their estimation performance compared. The classical partial least-squares (PLS) method was also compared with the others. Results of the estimations using the ANN, LSSVM and PLS models were compared with the operation data, and the root-mean square error (RMSE) for each model was calculated to evaluate estimation performance. The RMSE of the LSSVM model 15.91, which turned out to be the best estimation. RMSE values for the ANN and PLS models were 17.24 and 21.31, respectively, indicating their relative estimation performance. The essential input parameters used in the models can be selected by sensitivity analysis. The RMSE for each model was calculated again after a sequential input selection process was used to remove insignificant input parameters. The RMSE of the LSSVM was then 13.21, which is better than the previous RMSE with all 16 parameters. The results show that LSSVM model using 13 input parameters can be utilized to calculate the required values for oxygen volume and coolant needed to optimally adjust the steel target temperature.

Development of the Scientific Creative Problem Solving Test for the Selection of Gifted Science Students in Elementary School (초등학교 과학영재학급 학생선발을 위한 과학 창의적 문제해결력 검사도구 개발)

  • Choi, Sun-Young;Kang, Ho-Kam
    • Journal of Korean Elementary Science Education
    • /
    • v.25 no.1
    • /
    • pp.27-38
    • /
    • 2006
  • The purpose of this study was to develop a test of a creative problem solving (CPS) for the selection of gifted science students in elementary school. For this, the methods and procedures of the selection of gifted science students was investigated through the internet homepages 23 gifted science education centers of universities and 16 city. province offices of education. The results of this study were as follows: Most of the gifted science students were selected through a multi-step examination process. They were selected on the basis of their records by recommendation of a principal or a classroom teacher in their school, by operation of standardized tests (ex. intelligence quotient score, achievements in science and mathematics, interest and attitude/aptitude for science as well as through other means), as well as through intensive observation of those gifted science students who are selected by interview and oral tests. The selection of gifted students was not evaluated through creativity testing; giftedness in city. province office of education. Testing of CPS was found to be especially lacking in these organizations. For the development of the test items of CPS in science, the five elements were extracted through the framework for the content analysis of the CPS: problem exploration, problem statement, solution thinking, experiment design, and assesment. In addition, suggestions were made regarding an appropriate scoring system for the test of the CPS. As the result of the developed test was applied to the 4th grade of the gifted and general student, we found that gifted students were superior to general students. In conclusion, it was that the CPS test developed in this study should be used to evaluate the CPS for the selection of gifted students.

  • PDF

Evaluation of Optimum Genetic Contribution Theory to Control Inbreeding While Maximizing Genetic Response

  • Oh, S.H.
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.25 no.3
    • /
    • pp.299-303
    • /
    • 2012
  • Inbreeding is the mating of relatives that produce progeny having more homozygous alleles than non-inbred animals. Inbreeding increases numbers of recessive alleles, which is often associated with decreased performance known as inbreeding depression. The magnitude of inbreeding depression depends on the level of inbreeding in the animal. Level of inbreeding is expressed by the inbreeding coefficient. One breeding goal in livestock is uniform productivity while maintaining acceptable inbreeding levels, especially keeping inbreeding less than 20%. However, in closed herds without the introduction of new genetic sources high levels of inbreeding over time are unavoidable. One method that increases selection response and minimizes inbreeding is selection of individuals by weighting estimated breeding values with average relationships among individuals. Optimum genetic contribution theory (OGC) uses relationships among individuals as weighting factors. The algorithm is as follows: i) Identify the individual having the best EBV; ii) Calculate average relationships ($\bar{r_j}$) between selected and candidates; iii) Select the individual having the best EBV adjusted for average relationships using the weighting factor k, $EBV^*=EBV_j(1-k\bar{{r}_j})$ Repeat process until the number of individuals selected equals number required. The objective of this study was to compare simulated results based on OGC selection under different conditions over 30 generations. Individuals (n = 110) were generated for the base population with pseudo random numbers of N~ (0, 3), ten were assumed male, and the remainder female. Each male was mated to ten females, and every female was assumed to have 5 progeny resulting in 500 individuals in the following generation. Results showed the OGC algorithm effectively controlled inbreeding and maintained consistent increases in selection response. Difference in breeding values between selection with OGC algorithm and by EBV only was 8%, however, rate of inbreeding was controlled by 47% after 20 generation. These results indicate that the OGC algorithm can be used effectively in long-term selection programs.

Tracing the breeding farm of domesticated pig using feature selection (Sus scrofa)

  • Kwon, Taehyung;Yoon, Joon;Heo, Jaeyoung;Lee, Wonseok;Kim, Heebal
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.30 no.11
    • /
    • pp.1540-1549
    • /
    • 2017
  • Objective: Increasing food safety demands in the animal product market have created a need for a system to trace the food distribution process, from the manufacturer to the retailer, and genetic traceability is an effective method to trace the origin of animal products. In this study, we successfully achieved the farm tracing of 6,018 multi-breed pigs, using single nucleotide polymorphism (SNP) markers strictly selected through least absolute shrinkage and selection operator (LASSO) feature selection. Methods: We performed farm tracing of domesticated pig (Sus scrofa) from SNP markers and selected the most relevant features for accurate prediction. Considering multi-breed composition of our data, we performed feature selection using LASSO penalization on 4,002 SNPs that are shared between breeds, which also includes 179 SNPs with small between-breed difference. The 100 highest-scored features were extracted from iterative simulations and then evaluated using machine-leaning based classifiers. Results: We selected 1,341 SNPs from over 45,000 SNPs through iterative LASSO feature selection, to minimize between-breed differences. We subsequently selected 100 highest-scored SNPs from iterative scoring, and observed high statistical measures in classification of breeding farms by cross-validation only using these SNPs. Conclusion: The study represents a successful application of LASSO feature selection on multi-breed pig SNP data to trace the farm information, which provides a valuable method and possibility for further researches on genetic traceability.