• 제목/요약/키워드: Seismic structural response

검색결과 1,292건 처리시간 0.025초

Study of seismic performance and favorable structural system of suspension bridges

  • Zhang, Xin-Jun;Zhang, Chao
    • Structural Engineering and Mechanics
    • /
    • 제60권4호
    • /
    • pp.595-614
    • /
    • 2016
  • By taking the Runyang Highway Bridge over the Yangtze River with 1490 m main span as example, structural response of the bridge under the horizontal and vertical seismic excitations is investigated by the response spectrum and time-history analysis of MIDAS/Civil software respectively, the seismic behavior and the influence of structural nonlinearity on the seismic response of the bridge are revealed. Considering the aspect of seismic performance, the suitability of employing the suspension bridge in super long-span bridges is investigated as compared to the cable-stayed bridge and cable-stayed-suspension hybrid bridge with the similar main span. Furthermore, the effects of structural parameters including the span arrangement, the cable sag to span ratio, the side to main span ratio, the girder height, the central buckle and the girder support system etc on the seismic performance of the bridge are investigated by the seismic response spectrum analysis, and the favorable earthquake-resistant structural system of suspension bridges is also discussed.

지진파 탁월주기를 고려한 비구조요소의 수평설계지진력 평가 (A Study on Evaluation of Horizontal Force of Non-structural Components Considering Predominant Periods of Seismic Waves)

  • 오상훈;김주찬
    • 한국지진공학회논문집
    • /
    • 제24권6호
    • /
    • pp.267-275
    • /
    • 2020
  • In the event of an earthquake, non-structural components require seismic performance to ensure evacuation routes and to protect lives from falling non-structural components. Accordingly, the seismic design code proposes horizontal force for the design and evaluation of non-structural components. Ground motion observed on each floor is affected by a building's eigen vibration mode. Therefore, the earthquake damage of non-structural components is determined by the characteristics of the non-structural component system and the vibration characteristics of the building. Floor response spectra in the seismic design code are estimated through time history analysis using seismic waves. However, it is difficult to use floor response spectra as a design criterion because of user-specific uncertainties of time history analysis. In addition, considering the response characteristics of high-rise buildings to long-period ground motions, the safety factor of the proposed horizontal force may be low. Therefore, this study carried out the horizontal force review proposed in the seismic design code through dynamic analysis and evaluated the floor response of seismic waves considering buildings and predominant periods of seismic waves.

Investigation of seismic performance of super long-span cable-stayed bridges

  • Zhang, Xin-Jun;Zhao, Chen-Yang;Guo, Jian
    • Earthquakes and Structures
    • /
    • 제14권6호
    • /
    • pp.493-503
    • /
    • 2018
  • With the further increase of span length, the cable-stayed bridge tends to be more slender, and becomes more susceptible to the seismic action. By taking a super long-span cable-stayed bridge with main span of 1400m as example, structural response of the bridge under the E1 horizontal and vertical seismic excitations is investigated numerically by the multimode seismic response spectrum and time-history analysis respectively, the seismic behavior and also the effect of structural nonlinearity on the seismic response of super long-span cable-stayed bridge are revealed. Furthermore, the effect of structural parameters including the girder depth and width, the tower structural style, the tower height-to-span ratio, the side-tomain span ratio, the auxiliary piers in side spans and the anchorage system of stay cables etc on the seismic performance of super long-span cable-stayed bridge is investigated numerically by the multimode seismic response spectrum analysis, and the favorable earthquake-resistant structural system of super long-span cable-stayed bridge is proposed.

Investigations on seismic response of two span cable-stayed bridges

  • Bhagwat, Madhav;Sasmal, Saptarshi;Novak, B.;Upadhyay, A.
    • Earthquakes and Structures
    • /
    • 제2권4호
    • /
    • pp.337-356
    • /
    • 2011
  • In this paper, cable-stayed bridges with single pylon and two equal side spans, with variations in geometry and span ranging from 120 m to 240 m have been studied. 3D models of the bridges considered in this study have been analysed using ANSYS. As the first step towards a detailed seismic analysis, free vibration response of different geometries is studied for their mode shapes and frequencies. Typical pattern of free vibration responses in different frequencies with change in geometry is observed. Further, three different seismic loading histories are chosen with various characteristics to find the structural response of different geometries under seismic loading. Effect of variation in pylon shape, cable arrangement with variation in span is found to have typical characteristics with different structural response under seismic loading. From the study, it is observed that the structural response is very much dependent on the geometry of the cable-stayed bridge and the characteristics of the seismic loading as well. Further, structural responses obtained from the study would help the design engineers to take decisions on geometric shapes of the bridges to be constructed in seismic prone zones.

Effect of design spectral shape on inelastic response of RC frames subjected to spectrum matched ground motions

  • Ucar, Taner;Merter, Onur
    • Structural Engineering and Mechanics
    • /
    • 제69권3호
    • /
    • pp.293-306
    • /
    • 2019
  • In current seismic design codes, various elastic design acceleration spectra are defined considering different seismological and soil characteristics and are widely used tool for calculation of seismic loads acting on structures. Response spectrum analyses directly use the elastic design acceleration spectra whereas time history analyses use acceleration records of earthquakes whose acceleration spectra fit the design spectra of seismic codes. Due to the fact that obtaining coherent structural response quantities with the seismic design code considerations is a desired circumstance in dynamic analyses, the response spectra of earthquake records used in time history analyses had better fit to the design acceleration spectra of seismic codes. This paper evaluates structural response distributions of multi-story reinforced concrete frames obtained from nonlinear time history analyses which are performed by using the scaled earthquake records compatible with various elastic design spectra. Time domain scaling procedure is used while processing the response spectrum of real accelerograms to fit the design acceleration spectra. The elastic acceleration design spectra of Turkish Seismic Design Code 2007, Uniform Building Code 1997 and Eurocode 8 are considered as target spectra in the scaling procedure. Soil classes in different seismic codes are appropriately matched up with each other according to $V_{S30}$ values. The maximum roof displacements and the total base shears of considered frame structures are determined from nonlinear time history analyses using the scaled earthquake records and the results are presented by graphs and tables. Coherent structural response quantities reflecting the influence of elastic design spectra of various seismic codes are obtained.

Study of seismic performance of cable-stayed-suspension hybrid bridges

  • Zhang, Xin-Jun;Yu, Zhou-Jun
    • Structural Engineering and Mechanics
    • /
    • 제55권6호
    • /
    • pp.1203-1221
    • /
    • 2015
  • By taking a cable-stayed-suspension hybrid bridge with main span of 1400 m as example, seismic response of the bridge under the horizontal and vertical seismic excitations is investigated numerically by response spectrum analysis and time history analysis, its seismic performance is discussed and compared to the cable-stayed bridge and suspension bridge with the same main span, and considering the aspect of seismic performance, the feasibility of using cable-stayed-suspension hybrid bridge in super long-span bridges is discussed. Under the horizontal seismic action, the effects of structural design parameters including the cable sag to span ratio, the suspension to span ratio, the side span length, the subsidiary piers in side spans, the girder supporting system and the deck form etc on the seismic performance of the bridge are investigated by response spectrum analysis, and the favorable values of these design parameters are proposed.

지반-구조물-설비 상호작용을 고려한 지진응답 특성에 관한 해석적 연구 (An Analytical Study on Seismic Response Characteristics Considering Soil-Structure-Equipment Interaction)

  • 오현준;김유석
    • 한국지진공학회논문집
    • /
    • 제27권6호
    • /
    • pp.253-263
    • /
    • 2023
  • Non-structural elements, such as equipment, are typically affixed to a building's floor or ceiling and move in tandem with the structure during an earthquake. Seismic forces acting upon non-structural elements traverse the ground and the building's structure. Considering this seismic load transmission mechanism, it becomes imperative to account for the interactions between soil, structure, and equipment, establishing seismic design procedures accordingly. In this study, a Soil-Structure-Equipment Interaction (SSEI) model is developed. Through seismic response analysis using this model, how the presence or absence of SSEI impacts equipment behavior is examined. Neglecting the SSEI aspect when assessing equipment responses results in an overly conservative evaluation of its seismic response. This emphasizes the necessity of proposing an analytical model and design methodology that adequately incorporate the interaction effect. Doing so enables the calculation of rational seismic forces and facilitates the seismic design of non-structural elements.

Structural seismic response versus epicentral distance and natural period: the case study of Boumerdes (Algeria) 2003 earthquake

  • Dorbani, S.;Badaoui, M.;Benouar, D.
    • Structural Engineering and Mechanics
    • /
    • 제48권3호
    • /
    • pp.333-350
    • /
    • 2013
  • This paper deals with the development of expressions relating structural seismic response parameters to the epicentral distances of an earthquake and the natural period of several reinforced concrete buildings (6, 9 and 12 storey), with three floor plans: symmetric, monosymmetric, and unsymmetric. These structures are subjected to seismic spectrum of accelerations collected during the Boumerdes earthquake (Algeria, May $21^{st}$, 2003, Mw=6.8) at different epicentral distances. The objective of this study is to develop relations between structural responses namely: base shear, storey displacements, interstory drifts and epicentral distance and fundamental period for a given earthquake. The seismic response of the buildings is carried out in both longitudinal transverse and directions by the response spectrum method (modal spectral approach).

Impact of target spectra variance of selected ground motions on seismic response of structures

  • Xu, Liuyun;Zhou, Zhiguang
    • Earthquakes and Structures
    • /
    • 제23권2호
    • /
    • pp.115-128
    • /
    • 2022
  • One common method to select input ground motions to predict dynamic behavior of structures subjected to seismic excitation requires spectral acceleration (Sa) match target mean response spectrum. However, dispersion of ground motions, which explicitly affects the structural response, is rarely discussed in this method. Generally, selecting ground motions matching target mean and variance has been utilized as an appropriate method to predict reliable seismic response. The goal of this paper is to investigate the impact of target spectra variance of ground motions on structural seismic response. Two sets of ground motions with different target variances (zero variance and minimum variance larger than inherent variance of the target spectrum) are selected as input to two different structures. Structural responses at different heights are compared, in terms of peak, mean and dispersion. Results show that increase of target spectra variance tends to increase peak floor acceleration, peak deformation and dispersions of response of interest remarkably. To short-period structures, dispersion increase ratios of seismic response are close to that of Sa of input ground motions at the first period. To long-period structures, dispersions of floor acceleration and floor response spectra increase more significantly at the bottom, while dispersion increase ratios of IDR and deformation are close to that of Sa of input ground motions at the first period. This study could further provide useful information on selecting appropriate ground motion to predict seismic behavior of different types of structures.

단자유도 해석모델을 활용한 응답스펙트럼과 지진취약도 곡선과의 관계에 대한 연구 (A Study on the Relationship between Response Spectrum and Seismic Fragility Using Single Degree of Freedom System)

  • 박상기;조정래;조창백;이진혁;김동찬
    • 한국지진공학회논문집
    • /
    • 제27권6호
    • /
    • pp.245-252
    • /
    • 2023
  • In general, the design response spectrum in seismic design codes is based on the mean-plus-one-standard deviation response spectrum to secure high safety. In this study, response spectrum analysis was performed using seismic wave records adopted in domestic horizontal design spectrum development studies, while three response spectra were calculated by combining the mean and standard deviation of the spectra. Seismic wave spectral matching generated seismic wave sets matching each response spectrum. Then, seismic fragility was performed by setting three damage levels using a single-degree-of-freedom system. A correlation analysis was performed using a comparative analysis of the change in the response spectrum and the seismic fragility concerning the three response spectra. Finally, in the case of the response spectrum considering the mean and standard deviation, like the design response spectrum, the earthquake load was relatively high, indicating that conservative design or high safety can be secured.