• Title/Summary/Keyword: Seismic site effect

Search Result 172, Processing Time 0.021 seconds

Response Characteristics of Site-specific using Aftershock Event (여진을 통해 살펴본 대상구간의 응답특성)

  • Ahn, Jae-Kwang;Cho, Seongheum;Jeon, Young-Soo;Lee, Duk Kee
    • Journal of the Korean Geotechnical Society
    • /
    • v.34 no.8
    • /
    • pp.51-64
    • /
    • 2018
  • Korean peninsula is known to be far from the plate boundary and not to generate large-scale earthquakes. However, earthquakes recently occurred in Gyeongju (2016/09/12, $M_L=5.8$) and Pohang (2017/11/15, $M_L=5.4$). The interest in earthquake engineering has increased, and various studies are actively underway by recently events. However, the seismic station network in Korea is less dense than that of the western U.S., resulting in the lack of data for detailed analyses of earthquakes. Therefore, KMA (Korea Meteorological Administration) set up temporary seismic stations and recorded ground motions from aftershocks. In this study, characteristics of Pohang seismic propagation and generation of bedrock motion are analyzed through the aftershock ground motion records at both permanent and temporary stations, as well as through the collected geological structure and site information. As a result, the response at Mangcheon-Li shows evidences of basin effects from both geology structures and measured aftershock motions.

SHAKING TABLE TEST OF STEEL FRAME STRUCTURES SUBJECTED TO SCENARIO EARTHQUAKES

  • CHOI IN-KlL;KIM MIN KYU;CHOUN YOUNG-SUN;SEO JEONG-MOON
    • Nuclear Engineering and Technology
    • /
    • v.37 no.2
    • /
    • pp.191-200
    • /
    • 2005
  • Shaking table tests of the seismic behavior of a steel frame structure model were performed. The purpose of these tests was to estimate the effects of a near-fault ground motion and a scenario earthquake based on a probabilistic seismic hazard analysis for nuclear power plant structures. Three representative kinds of earthquake ground motions were used for the input motions: the design earthquake ground motion for the Korean nuclear power plants, the scenario earthquakes for Korean nuclear power plant sites, and the near-fault earthquake record from the Chi-Chi earthquake. The probability-based scenario earthquakes were developed for the Korean nuclear power plant sites using the PSHA data. A 4-story steel frame structure was fabricated to perform the tests. Test results showed that the high frequency ground motions of the scenario earthquake did not damage the structure at the nuclear power plant site; however, the ground motions had a serious effect on the equipment installed on the high floors of the building. This shows that the design earthquake is not conservative enough to demonstrate the actual danger to safety related nuclear power plant equipment.

Investigation on economical method of foundation construction on soft soils in seismic zones: A case study in southern Iran

  • Javad Jalili;Farajdollah Askari;Ebrahim Haghshenas;Azadeh Marghaiezadeh
    • Geomechanics and Engineering
    • /
    • v.32 no.2
    • /
    • pp.209-232
    • /
    • 2023
  • A comprehensive study was conducted to design economical foundations for a number of buildings on soft cohesive soil in the southern coastal regions of Iran. Both static and seismic loads were considered in the design process. Cyclic experiments indicated that the cohesive soil of the area has potential for softening. Consequently, the major challenge in the design stages was relatively high dimensions of settlement, under both static and seismic loadings. Routine soil-improvement methods were too costly for the vast area of the project. After detailed numerical modeling of different scenarios, we concluded that, in following a performance-based design approach and applying a special time schedule of construction, most of the settlement would dissipate during the construction of the buildings. Making the foundation as rigid as possible was another way to prevent any probable differential settlement. Stiff subgrade of stone and lime mortar under the grid foundation and a reinforced concrete slab on the foundation were considered as appropriate to this effect. In favor of an economical design, in case the design earthquake strikes the site, the estimations indicate no collapse of the buildings even if considerable uniform settlements may occur. This is a considerable alternative design to costly soil-improvement methods.

Development and Verification of Approximate Methods for In-Structure Response Spectrum (ISRS) Scaling (구조물내응답스펙트럼 스케일링 근사 방법 개발 및 검증)

  • Shinyoung Kwag;Chaeyeon Go;Seunghyun Eem;Jaewook Jung;In-Kil Choi
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.37 no.2
    • /
    • pp.111-118
    • /
    • 2024
  • An in-structure response spectrum (ISRS) is required to evaluate the seismic performance of a nuclear power plant (NPP). However, when a new ISRS is required because of the change in the unique spectrum of an NPP site, considerable costs such as seismic response re-analyses are incurred. This study provides several approaches to generate approximate methods for ISRS scaling, which do not require seismic response re-analyses. The ISRSs derived using these approaches are compared to the original ISRS. The effect of the ISRS of the approximate method on the seismic response and seismic performance of one of the main systems of an NPP is analyzed. The ISRS scaling approximation methods presented in this study produce ISRSs that are relatively similar at low frequencies; however, the similarity decreases at high frequencies. The effect of the ISRS scaling approximate method on the calculation accuracy of the seismic response/seismic performance of the system is determined according to the degree of similarity in the calculation of the system's essential mode responses for the method.

Estimation of Path Attenuation Effect from Ground Motion in the Korean Peninsula using Stochastic Point-source Model (추계학적 점지진원 모델을 사용한 한반도 지반 운동의 경로 감쇠 효과 평가)

  • Jee, Hyun Woo;Han, Sang Whan
    • Journal of the Earthquake Engineering Society of Korea
    • /
    • v.24 no.1
    • /
    • pp.9-17
    • /
    • 2020
  • The stochastic point-source model has been widely used in generating artificial ground motions, which can be used to develop a ground motion prediction equation and to evaluate the seismic risk of structures. This model mainly consists of three different functions representing source, path, and site effects. The path effect is used to emulate decay in ground motion in accordance with distance from the source. In the stochastic point-source model, the path attenuation effect is taken into account by using the geometrical attenuation effect and the inelastic attenuation effect. The aim of this study is to develop accurate equations of ground motion attenuation in the Korean peninsula. In this study, attenuation was estimated and validated by using a stochastic point source model and observed ground motion recordings for the Korean peninsula.

Elastic Horizontal Response of a Structure to Bedrock Earthquake Considering the Nonlinearity of the Soil Layer (지반의 비선형성을 고려한 암반지진에 의한 구조물의 수평방향 탄성거동)

  • Kim, Yong-Seok
    • Journal of the Earthquake Engineering Society of Korea
    • /
    • v.6 no.3
    • /
    • pp.53-62
    • /
    • 2002
  • Site soil condition affects significantly on the seismic response of a structure and is a critical factor for the performance based seismic design of a structure. In this paper, the effects of nonlinear soil properties on the elastic response spectra of a structure including the nonlinearity of a soil due to the earthquake excitation is investigated using one step finite element approach for the entire soil structure system and approximate linear iterative procedure to simulate the nonlinear soil behavior with the Ramberg-Osgood soil model. Studies were carried out for a linear SDOF system of a variable period with and without a pile group for the 1940 CI Centro earthquake recorded on ground rather than rock. The study results showed clearly that the effect of the nonlinear behavior of soft soil is very important on the elastic seismic response of a structure suggesting the necessity of the performance based seismic design.

Retrofitting of vulnerable RC structures by base isolation technique

  • Islam, A.B.M. Saiful;Jumaat, Mohd Zamin;Ahmmad, Rasel;Darain, Kh. Mahfuz ud
    • Earthquakes and Structures
    • /
    • v.9 no.3
    • /
    • pp.603-623
    • /
    • 2015
  • The scale and nature of the recent earthquakes in the world and the related earthquake disaster index coerce the concerned community to become anxious about it. Therefore, it is crucial that seismic lateral load effect will be appropriately considered in structural design. Application of seismic isolation system stands as a consistent alternative against this hazard. The objective of the study is to evaluate the structural and economic feasibility of reinforced concrete (RC) buildings with base isolation located in medium risk seismic region. Linear and nonlinear dynamic analyses as well as linear static analysis under site-specific bi-directional seismic excitation have been carried out for both fixed based (FB) and base isolated (BI) buildings in the present study. The superstructure and base of buildings are modeled in a 3D finite element model by consistent mass approach having six degrees of freedom at each node. The floor slabs are simulated as rigid diaphragms. Lead rubber bearing (LRB) and High damping rubber bearing (HDRB) are used as isolation device. Change of structural behaviors and savings in construction costing are evaluated. The study shows that for low to medium rise buildings, isolators can reduce muscular amount of base shears, base moments and floor accelerations for building at soft to medium stiff soil. Allowable higher horizontal displacement induces structural flexibility. Though incorporating isolator increases the outlay, overall structural cost may be reduced. The application of base isolation system confirms a potential to be used as a viable solution in economic building design.

Seismic risk estimation of the Kirikkale province through street survey based rapid assessment method (SSRA)

  • Sonmezer, Yetis Bulent;Bas, Selcuk;Akbas, Sami Oguzhan
    • Earthquakes and Structures
    • /
    • v.14 no.6
    • /
    • pp.615-626
    • /
    • 2018
  • The seismic vulnerability of Turkey is relatively high due to its active fault systems with potential to create destructive earthquakes. Thus, reducing the loss of life and property, the number of the earthquake-prone buildings and their retrofit requirements are considerably significant key issues under the scenario earthquakes. The street survey based rapid assessment (SSRA) method can be considered as a powerful tool to determine the seismic vulnerability of building stock of an earthquake-prone city/state. In this study, the seismic vulnerability of the building stock of the Kirikkale province in Turkey is aimed to be estimated adopting the street survey based rapid assessment method (SSRA). For this purpose, central 2074 existing reinforced concrete (R/C) buildings were structurally surveyed with rapid visual site screening and disadvantages such as, the existence of short-column, soft-story, heavy overhangs, pounding effect and local soil conditions were determined for obtaining the structural performance score of each. The results obtained from the study demonstrate that 11-25% of the surveyed buildings in the study region needs to be investigated through more advanced assessment methods. Besides, higher correlation between increasing story number and unsafe/safe building ratio is obtained for the buildings with soft-story parameter than that for those with heavy overhangs and short-column parameters. The conformity of the results of the current study with the previous documented cases of rapid assessment efforts in the recent earthquakes in Turkey shows that the SSRA method for the Kirikkale province performed well, and thus this methodology can be reliably used for similar settlement areas.

Correlation of response spectral values in Japanese ground motions

  • Jayaram, Nirmal;Baker, Jack W.;Okano, Hajime;Ishida, Hiroshi;McCann, Martin W. Jr.;Mihara, Yoshinori
    • Earthquakes and Structures
    • /
    • v.2 no.4
    • /
    • pp.357-376
    • /
    • 2011
  • Ground motion models predict the mean and standard deviation of the logarithm of spectral acceleration, as a function of predictor variables such as earthquake magnitude, distance and site condition. Such models have been developed for a variety of seismic environments throughout the world. Some calculations, such as the Conditional Mean Spectrum calculation, use this information but additionally require knowledge of correlation coefficients between logarithmic spectral acceleration values at multiple periods. Such correlation predictions have, to date, been developed primarily from data recorded in the Western United States from active shallow crustal earthquakes. This paper describes results from a study of spectral acceleration correlations from Japanese earthquake ground motion data that includes both crustal and subduction zone earthquakes. Comparisons are made between estimated correlations for Japanese response spectral ordinates and correlation estimates developed from Western United States ground motion data. The effect of ground motion model, earthquake source mechanism, seismic zone, site conditions, and source to site distance on estimated correlations is evaluated and discussed. Confidence intervals on these correlation estimates are introduced, to aid in identifying statistically significant differences in correlations among the factors considered. Observed general trends in correlation are similar to previous studies, with the exception of correlation of spectral accelerations between orthogonal components, which is seen to be higher here than previously observed. Some differences in correlations between earthquake source zones and earthquake mechanisms are observed, and so tables of correlations coefficients for each specific case are provided.

A Study on the Selection and Modification of Ground Motion Based on Site Response Analysis (부지응답해석에 기반한 지반운동 선정 및 보정에 관한 고찰)

  • Hwang, Jung-Hyun;Mauk, Ji-Wook;Son, Hyeon-Sil;Ock, Jong-Ho
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.24 no.5
    • /
    • pp.103-110
    • /
    • 2020
  • In the recent seismic design code KDS 41 17 00, selection and modification procedures of ground motions which are used for nonlinear dynamic analyses were adopted. However, its practical applications are still limited due to the lack of literatures. This paper introduces case studies which used site-response analyses to select and modify ground motions for nonlinear dynamic analyses. Based on the case studies, design criterion for site-response analyses were reviewed thoroughly in the viewpoint of practical applications. It was found that design requirements related with bedrock motions are too conservative that ground motions are selected and modified in the excessive manner. It is especially true for low-rise building structures with period ranges including acceleration-sensitive regions. Even though surface motions have shown appropriate responses, such building structures have to re-select and re-modify ground motions based on pre-analysis procedures rather than post-ones according to the current seismic design code. Also, it was observed that building structures with soft soils under strong ground motions need more comprehensive investigations on soil properties and efficient analysis methods in order to perform site-response analyses. This is due to the fact that lack of reliabilities on soil properties and analysis methods could result in unstable site-responses.