• Title/Summary/Keyword: Seismic resistance

Search Result 466, Processing Time 0.029 seconds

Experimental Study on the Behavior of Building Hardware with Joint Details (접합 방법에 따른 하지철물 구조물의 거동에 관한 실험적 연구)

  • Hong, Seonguk;Kim, Seunghun;Baek, Kiyoul
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.22 no.1
    • /
    • pp.190-198
    • /
    • 2018
  • In recent years, non-welded building hardware has been installed by bolt assembly is used. The non-welded building hardware method can reduce accidents caused by welding, and can be constructed by bolt assembly, which can reduce labor costs and shorten the construction period. However, there is a need for a method to compensate for the occurrence of buckling at the time of construction. The purpose of this study is to evaluate the behavior of joints between steel pipe and fastener and to evaluate the behavior of joints of non-welded and welded hardware frame. As a result, it was found that the foundation steel structure without welded joints was deformed to a rotation angle of member much larger than the allowable interlayer displacement angle 0.01 to 0.02 required according to the seismic load rating in the seismic load resistance system.

Seismic Response Evaluation of Composite Steel-Concrete Box Girder Bridge according to Aging Effect of Piers (교각의 노후도 영향에 따른 강합성 상자형 거더교의 지진응답 평가)

  • Shin, Soobong;Hong, Ji-Yeong;Moon, Jiho;Song, Jong-Keol
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.33 no.5
    • /
    • pp.319-329
    • /
    • 2020
  • Among the bridges used in Korea, those that are more than 30 years old account for approximately 11% of the total bridges. Therefore, developing a seismic performance-evaluation method is necessary by considering the bridge age. Three composite steel-concrete box girder bridges with port, elastic-rubber, and lead-rubber bearings were selected, and a structural analysis model was developed using the OpenSEESs program. In this study, pier aging was reflected by the reduction in the area of the longitudinal and transverse rebars. Four conditions of 5%, 10%, 25%, and 50% in the degree of pier aging were used. As input earthquakes, 40 near-fault and far-field earthquakes were used, and the maximum displacement and maximum shear-force responses of the piers were obtained and compared. The result shows that as the aging degree increases, the pier strength decreases. Therefore, the pier displacement response increases. To analyze the effects of displacement response and shear resistance, displacement ratio Dratio and shear-force ratio Fratio were evaluated. The older the sample bridge is, the greater is the tendency of Dratio to increase and the smaller is the tendency of Fratio to decrease.

Verification of the Numerical Analysis on Caisson Quay Wall Behavior Under Seismic Loading Using Centrifuge Test (원심모형시험을 이용한 케이슨 안벽의 지진시 거동에 대한 수치해석 검증)

  • Lee, Jin-Sun;Park, Tae-Jung;Lee, Moon-Gyo;Kim, Dong-Soo
    • Journal of the Korean Geotechnical Society
    • /
    • v.34 no.11
    • /
    • pp.57-70
    • /
    • 2018
  • In this study, verification of the nonlinear effective stress analysis is performed for introducing performance based earthquake resistance design of port and harbor structures. Seismic response of gravitational caisson quay wall in numerical analysis is compared directly with dynamic centrifuge test results in prototype scale. Inside of the rigid box, model of the gravitational quay wall is placed above the saturated sand layer which can show the increase of excess pore water pressure. The model represents caisson quay wall with a height of 10 m, width of 6 m under centrifugal acceleration of 60 g. The numerical model is made in the same dimension with the prototype scale of the test in two dimensional plane strain condition. Byrne's liquefaction model is adopted together with a nonlinear constitutive model. Interface element is used for sliding and tensional separation between quay wall and the adjacent soils. Verification results show good agreement for permanent displacement of the quay wall, horizontal acceleration at quay wall and soil layer, and excess pore water pressure increment beneath the quay wall foundation.

Hysteretic characteristics of steel plate shear walls: Effects of openings

  • Ali, Mustafa M.;Osman, S.A.;Yatim, M.Y.M.;A.W., Al Zand
    • Structural Engineering and Mechanics
    • /
    • v.76 no.6
    • /
    • pp.687-708
    • /
    • 2020
  • Openings in steel plate shear walls (SPSWs) are usually used for decorative designs, crossing locations of multiple utilities and/or structural objectives. However, earlier studies showed that generating an opening in an SPSW has a negative effect on the cyclic performance of the SPSW. Therefore, this study proposes tripling or doubling the steel-sheet-plate (SSP) layer and stiffening the opening of the SPSW to provide a solution to undesirable opening effects, improve the SPSW performance and provide the infill option of potential strengthening measures after the construction stage. The study aims to investigate the impact of SSP doubling with a stiffened opening on the cyclic behaviour, expand the essential data required by structural designers and quantify the SPSW performance factors. Validated numerical models were adopted to identify the influence of the chosen parameters on the cyclic capacity, energy dissipation, ductility, seismic performance factors (SPF) and stiffness of the suggested method. A finite Element (FE) analysis was performed via Abaqus/CAE software on half-scale single-story models of SPSWs exposed to cyclic loading. The key parameters included the number of SSP layers, the opening size ratios corresponding to the net width of the SSP, and the opening shape. The findings showed that the proposed assembly method found a negligible influence in the shear capacity with opening sizes of 10, 15, 20%. However, a deterioration in the wall strength was observed for openings with sizes of 25% and 30%. The circular opening is preferable compared with the square opening. Moreover, for all the models, the average value of the obtained ductility did not show substantial changes and the ultimate shear resistance was achieved after reaching a drift ratio of 4.36%. Additionally, the equivalent sectional area of the SSP in the twin and triple configuration of the SPSWs demonstrated approximately similar results. Compared with the single SSP layer, the proposed configuration of the twin SSP layer with a stiffened opening suggest to more sufficiency create SSP openings in the SPSW compared to that of other configurations. Finally, a tabular SPF quantification is exhibited for SPSWs with openings.

A Study on Strength of Plat-Plate Wall-Column Connections (Wall Column을 적용한 플랫플레이트 접합부 강도발현에 관한 연구)

  • Lee, Do-Bum;Park, Hong-Gun;Lee, Li-Hyung
    • Journal of the Korea Concrete Institute
    • /
    • v.18 no.2 s.92
    • /
    • pp.257-266
    • /
    • 2006
  • Flat-plate building systems are utilized extensively for construction of apartments, hotels and office buildings because of short construction period, low floor-to-floor height and flexibility in plan design. Recently, to increase lateral seismic resistance of flat-plate building systems, wall-columns are used frequently. Therefore, to estimate strength of flat-plate column connection accurately, the effect of column section shape on the behavior of flat-plate column connection should be considered properly, In the present study, a numerical analysis was performed for interior connections of continuous flat-plate to analyze the effect of column section shape. For the purpose, a computer program for nonlinear FE analysis was developed, and the validity was verified. Through the parametric study, the variations of shear stress distribution around the connection were investigated. According to the result of numerical analysis, as the length of the cross section of column in the direction of lateral load increases, the effective area and the maximum shear strength providing the torsional resistance decrease considerably. Therefore, these effects should be considered properly to estimate the strength of flat-plate connection accurately.

Earthquake Resistance of Modular Building Units Using Load-Bearing Steel Stud Panels (내력벽식 스터드패널을 적용한 모듈러건물유닛의 내진성능)

  • Ha, Tae Hyu;Cho, Bong-Ho;Kim, Tae Hyeong;Lee, Doo Yong;Eom, Tae Sung
    • Journal of Korean Society of Steel Construction
    • /
    • v.25 no.5
    • /
    • pp.519-530
    • /
    • 2013
  • Cyclic tests on modular building units for low-rise buildings composed of stud panels and a light-weight steel perimeter frame, were performed to evaluate the earthquake resistance such as stiffness, load-carrying capacity, ductility, and energy dissipation per load cycle. The strap-braced and sheeted stud panels were used as the primary lateral load-resistant element of the modular building units. Test results showed that the modular building units using the strap-braced and sheeted stud panels exhibited excellent post-yield ductile behaviors. The maximum drift ratios were greater than 5.37% and the displacement ductility ratios were greater than 5.76. However, the energy dissipation per load cycle was poor due to severe pinching during cyclic loading. Nominal strength, stiffness, and yield displacement of the modular building units were predicted based on plastic mechanisms. The predictions reasonably and conservatively correlated with the test results. However, the elastic stiffness of the strap-braced stud panel was significantly overestimated. For conservative design, the elastic stiffness of the strap-braced stud panel needs be decreased to 50% of the nominal value.

A Study on Liquefaction Assessment of Moderate Earthquake Region concerning Earthquake Magnitude of Korea (국내 지진규모를 고려한 중진 지역에서의 액상화 평가방법에 관한 연구)

  • Kim, Soo-Il;Park, Keun-Bo;Park, Seong-Yong;Seo, Kyung-Bum
    • Journal of the Earthquake Engineering Society of Korea
    • /
    • v.10 no.3 s.49
    • /
    • pp.125-134
    • /
    • 2006
  • Conventional methods for the assessment of liquefaction potential were primary for severe earthquake regions $(M{\geq}7.5)$ such as North America and Japan. In Korea, an earthquake related research has started in 1997, but most contents in the guidelines were still quoted from literature reviews of North America and Japan, which are located in strong earthquake region. Those are not proper in a moderate earthquake regions including Korea. Also the equivalent uniform stress concept (Seed & Idriss, 1971) using regular sinusoidal loading which is used, in a conventional method for the assessment of liquefaction potential, can't reflect correctly the dynamic characteristics of real irregular earthquake motions. In this study, cyclic triaxial tests using irregular earthquake motions are performed with different earthquake magnitudes, relative densities, and fines contents. Assessment of liquefaction potential in moderate earthquake regions is discussed based on various laboratory test results. From the results, screening limits in seismic design were re-investigated and proposed using normalized maximum stress ratios under real irregular earthquake motions. Also from the tests using constant wedge loading and incremental wedge loading, the characteristics of liquefaction resistance of saturated sand under irregular ground motions are investigated.

Evaluation of Gusset Plate Connection Stiffness in Braced Frames (가새 골조에서 거싯 플레이트 연결부의 강성 평가)

  • Yoo, Jung Han
    • Journal of Korean Society of Steel Construction
    • /
    • v.21 no.2
    • /
    • pp.105-113
    • /
    • 2009
  • To improve braced frame performance, the connection strength, stiffness, and ductility must be directly considered in the frame design. The resistance of the connection must be designed to resist seismic loads and to help provide the required system ductility. In addition, the connection stiffness affects the dynamic response and the deformation demands on the structural members and connections. In this paper, current design models for gusset plate connections are reviewed and evaluated usingthe results of past experiments. Current models are still not sufficient to provide adequate connection design guidelines and the actual stress and strain states in the gusset plate are very nonlinear and highly complex. Design engineers want simple models with beam and column elements to make an approximate estimation of system and connection performance. The simplified design models are developed and evaluated to predict connection stiffness and system behavior. These models produce reasonably accurate and reliable estimation of connection stiffness.

Observational failure analysis of precast buildings after the 2012 Emilia earthquakes

  • Minghini, Fabio;Ongaretto, Elena;Ligabue, Veronica;Savoia, Marco;Tullini, Nerio
    • Earthquakes and Structures
    • /
    • v.11 no.2
    • /
    • pp.327-346
    • /
    • 2016
  • The 2012 Emilia (Italy) earthquakes struck a highly industrialized area including several thousands of industrial prefabricated buildings. Due to the lack of specific design and detailing for earthquake resistance, precast reinforced concrete (RC) buildings suffered from severe damages and even partial or total collapses in many cases. The present study reports a data inventory of damages from field survey on prefabricated buildings. The damage database concerns more than 1400 buildings (about 30% of the total precast building stock in the struck region). Making use of the available shakemaps of the two mainshocks, damage distributions were related with distance from the nearest epicentre and corresponding Pseudo-Spectral Acceleration for a period of 1 second (PSA at 1 s) or Peak Ground Acceleration (PGA). It was found that about 90% of the severely damaged to collapsed buildings included into the database stay within 16 km from the epicentre and experienced a PSA larger than 0.12 g. Moreover, 90% of slightly to moderately damaged buildings are located at less than 25 km from the epicentre and were affected by a PSA larger than 0.06 g. Nevertheless, the undamaged buildings examined are almost uniformly distributed over the struck region and 10% of them suffered a PSA not lower than 0.19g. The damage distributions in terms of the maximum experienced PGA show a sudden increase for $PGA{\geq}0.28g$. In this PGA interval, 442 buildings were collected in the database; 55% of them suffered severe damages up to collapse, 32% reported slight to moderate damages, whereas the remaining 13% resulted undamaged.

The Stochastic Finite Element Analysis and Reliability Analysis of the Cable Stayed Bridge Subjected to Earthquake Load (지진하중을 받는 사장교의 확률유한요소해석 및 신뢰성해석)

  • Shin, Jae-Chul;Han, Sung-Ho
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.18 no.1
    • /
    • pp.29-42
    • /
    • 2005
  • Considering the effect by uncertainty in the structures, it is reasonable that the safety examination has to be performed by using method of reliability evaluation. Therefore, in this study, program is developed which can perform the reliability analysis or the dynamic response analysis more efficiently by formularizing the stochastic finite element analysis suitable for the existing reliability analysis about the cable stayed bridge suffering the seismic loads. Based on this program, the characteristic of dynamic responses is analyzed quantitatively by examining the average, the standard deviation and the coefficient of variance about the displacement, the resistance and the tension of cable according to the random variables. and the safety of cable stayed bridge is evaluated by examining of reliability index and failure probability