• Title/Summary/Keyword: Seismic resistance

Search Result 470, Processing Time 0.024 seconds

Seismic Performance of Gravity-Load Designed Post-Tensioned Flat Plate Frames (중력하중으로 설계된 포스트텐션 플랫플레이트 골조의 내진성능)

  • Han, Sang-Whan;Park, Young-Mi;Rew, Youn-Ho
    • Journal of the Earthquake Engineering Society of Korea
    • /
    • v.14 no.3
    • /
    • pp.31-38
    • /
    • 2010
  • The purpose of this study is to evaluate the seismic performance of gravity-designed post tensioned (PT) flat plate frames with and without slab bottom reinforcement passing through the column. In low and moderate seismic regions, buildings are often designed considering only gravity loads. This study focuses on the seismic performance of gravity load designed PT flat plate frames. For this purpose, 3-, 6- and 9-story PT flat plate frames are designed considering only gravity loads. For reinforced concrete flat plate frames, continuous slab bottom reinforcement (integrity reinforcement) passing through the column should be placed to prevent progressive collapse; however, for the PT flat plate frames, the slab bottom reinforcement is often omitted since the requirement for the slab bottom reinforcement for PT flat plates is not clearly specified in ACI 318-08. This study evaluates the seismic performance of the model frames, which was evaluated by conducting nonlinear time history analyses. For conducting nonlinear time history analyses, six sets of ground motions are used as input ground motions, which represent two different hazard levels (return periods of 475 and 2475 years) and three different locations (Boston, Seattle, and L.A.). This study shows that gravity designed PT flat plate frames have some seismic resistance. In addition, the seismic performance of PT flat plate frames is significantly improved by the placement of slab bottom reinforcement passing through the column.

An Experimental Study on the Mechanical Properties of Ductile Outline Form and Fire Resistance of High Strength RC Column (고인성 외곽 거푸집의 역학성능 및 이를 활용한 고강도 RC기둥의 내화성능에 관한 실험적 연구)

  • Rho, Hyoung-Nam;Kim, Jae-Hwan;Kim, Yong-Ro;Kim, Wook-Jong;Kwon, Young-Jin;Lee, Sang-Soo
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2008.11a
    • /
    • pp.199-203
    • /
    • 2008
  • With recent trend in domestic and global market requiring architectures' conversion into skyscrapers seasoned with the features of landmarks, structural problems in relation with explosive spatting during fire emergencies are arising as controversial issues. Accordingly, many productive researches have been made in relation to the reinforcement techniques for improving fire resistance and the number of applications in the field is gradually increasing. In this study, a ductile outline form using ECC (Engineered Cementations Composites) was made with improvements on the structure and fire resistance to examine its applicability. Also, currently in Japan, the number of studies and applications is increasing focusing on reduction of construction time and improvement of workability with application of Half-PCa method. However, using such method of construction, large structural members decrease the utilization of space and architecture-wise, there is a disadvantage of the weight increase. Therefore, in such context, it would be worth reducing the weight of the structural members by reducing the size using ECC. In addition, its excellent pseudo strain-hardening due to fiber may have great effects on seismic designs. In the mean time, this study planned 3 equal conditions for mix water, PVA fiber and additives excluding binder and refractory to evaluate the mechanical properties of resistance against pressure and internal force. Finally, an evaluation was executed on the fire resistance of the newly made ductile outline form. As a result, from ECC-I to ECC-III, all showed excellent mechanical properties due to pseudo strain-hardening and in the fire resistance test conducted with ISO 834 heating curve, most of them tended to be in the range of the reference temperature (538℃-180min), so there was no occurrence of any explosive spatting.

  • PDF

Experimental Study on Seismic Resistance of A Unreinforced Cement Brick Building (비보강 시멘트벽돌 건물의 내진성능 실험연구)

  • 김장훈
    • Proceedings of the Earthquake Engineering Society of Korea Conference
    • /
    • 2000.04a
    • /
    • pp.298-307
    • /
    • 2000
  • The behavior of a unreinforced cement brick building structure subjected to earthquake loading was experimentally investigated. for this four full size wall specimens were tested under quasi-static in-plane cyclic loading. Experimental observations indicate that the failure modes of unreinforced masonry walls are principally governed by sliding or/and rocking depending on the aspect ration and magnitude of axial loading. Also found was the flexure or shear mode resulting from the degraded strength of brick and/or mortar due to the cyclic loading effect.

  • PDF

Review of Design Provisions for Earthquake Resistance of RC Structures in Eurocode 8 (RC 구조물에 대한 Eurocode 8의 내진설계 규준 검토)

  • 이한선;허윤섭;이주은
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 1999.04a
    • /
    • pp.677-682
    • /
    • 1999
  • In this paper, the basic concepts and main characteristics in Eurocode 8, which deals with earthquake-resistant design, are reviewed regarding the design of reinforced concrete structures. Eurocode uses the limit-state design method to satisfy the requirements of safety and serviceability. This kind of information can serve to establish the up-coming Korean seismic code which is comprehensive and appropriate to the moderate seismicity region by constituting an important part in the basic data-pool.

  • PDF

Earthquake Resistance of Masonry Infilled Wall (조적 채움벽의 내진성)

  • 이한선;우성우;유은진
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2000.10a
    • /
    • pp.93-98
    • /
    • 2000
  • The objective of this study is to investigate the results of researches which have been conducted throughout the world and in Korea concerning the behavior modes of masonry infill panels and frames. The influence of masonry infill panels on the seismic behavior of RC frames must be considered in the design and evaluation procedure though current code provisions do not generally require explicitly this consideration. However, since the level of the earthquake intensity in Korea is assumed to be moderate, the masonry infill panels may cause the different effect to the structure from those in high seismicity region and this difference should be studied in depth in the future.

  • PDF

Development of Seismic Analysis Technique for Masonry Structure (조적식 교각의 내진해석 기법 개발)

  • 정용철;배준현;이준석;강영종
    • Proceedings of the KSR Conference
    • /
    • 2002.05a
    • /
    • pp.171-176
    • /
    • 2002
  • There are many railway structures which were designed without conidering aseismic capacity. In special, masonry structures constructed long time ago should be reviewed about their resistance to earthquake. In this paper, technique to evaluate the capacity of masonry railway bridge is tried to develop by means of FEM analysis. In general FEM analysis program, 3-D solid element is used for masonry structures and response spectrum analysis procedure is tried. In addition, 3-D solid element has material properties equivalent to mortar-brick composite body. Used FEM program is ABAQUS-CAE.

  • PDF

A study on the characteristics of friction pendulum isolation bearings (마찰진자형 면진베어링의 특성 연구)

  • 김영중
    • Proceedings of the Earthquake Engineering Society of Korea Conference
    • /
    • 2000.10a
    • /
    • pp.407-414
    • /
    • 2000
  • The friction pendulum type seismic isolation system (FPS) has been developed to provide a simple and effective way to achieve earthquake resistance for buildings . The major advantages are: the isolation frequency can be easily achieved by designing a curvature of the surface and does not depend on the supported weight of a structure. The function of carrying vertical load is separated to the function of providing horizontal stiffness. Next the friction provides sufficient energy dissipation to protect the structure from earthquake response and resistance to the weak external disturbances such as wind load and ground vibrations due to traffic. In this paper, the friction coefficients are evaluated from number of experiments on the FPS test specimens. The relations between friction coefficient and the test waveform, velocity, and pressure are reviewed and further works are discussed.

  • PDF

A Development of performance criteria tool for lightweight dry wall (건식경량벽체 요구성능 도출 도구 개발에 관한 연구)

  • Ji, Suk-won;Yoon, Sang-chun;Choi, Soo-kyung
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2019.11a
    • /
    • pp.215-216
    • /
    • 2019
  • The following conclusions were reached through the research on the development of the required performance extraction tools for the application and utilization of various construction methods of lightweght dry wall. 1) Performance required for walls of apartment buildings can be divided into safety, habitation, durability and productivity. Among these, horizontal load resistance, shock resistance, anti-seismic performance, insulation, and acoustic characteristics are the main performance that correspond to dry walls. In addition, safety related to toxic gases and contaminants are required according to recent eco-friendly requirements. 2) To select a wall according to the required performance of an inner wall applied to an apartment, a map tool in the form of 2D matrices was constructed to enable the required performance to be applied, indicating that the wall location and wall material and its differentiating according to the old method.

  • PDF

An Experimental Study for the Liquefaction Resistance Strength of Saturated Sand Using Real Earthquake Loading (실지진하중을 이용한 포화사질토의 액상화 저항강도에 관한 실험적 연구)

  • 심재욱;박근보;최재순;김수일
    • Journal of the Korean Geotechnical Society
    • /
    • v.18 no.4
    • /
    • pp.329-337
    • /
    • 2002
  • Based on the equivalent uniform stress concept presented by Seed and Idriss, sinusoidal cyclic loads which simplified the earthquake loads have been applied in evaluating the liquefaction resistance strength experimentally. However, the liquefaction resistance strength of soil based on the equivalent uniform stress concept can not exactly reflect the dynamic characteristics of the irregular earthquake motion. In this study, the criterion of the liquefaction resistance strength was determined by applying real earthquake loading to the cyclic triaxial test. From the test results, relationships between liquefaction behaviors of saturated sand and earthquake characteristics such as magnitude or time-duration were determined. Magnitude scaling factors to determine the soil liquefaction resistance strength in seismic design were also proposed.

Study on the Performance of New Shear Resistance Connecting Structure of Precast Member (프리캐스트 부재의 새로운 전단저항 연결체의 성능에 관한 연구)

  • Kim, Tae-Hoon;Jin, Byeong-Moo;Kim, Young-Jin;Kim, Seong-Woon
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.28 no.1A
    • /
    • pp.147-154
    • /
    • 2008
  • The purpose of this study is to critically evaluate the structural performance of an innovative new shear resistance connecting structure of precast member. Joints such as shear resistance connecting structure require special attention when designing and constructing precast segmental structures. An experimental and analytical study was conducted to quantify performance measures and examine one aspect of detailing for developed shear resistance connecting structure. A computer program, named RCAHEST (Reinforced Concrete Analysis in Higher Evaluation System Technology), for the analysis of reinforced concrete structures was used. A joint element is used to predict the inelastic behavior of the joints between segmental members. Future work by the authors will do a model test of precast segmental prestressed concrete bridge columns with this shear resistance connecting structure, and examined both the structural behavior and seismic performance.