• Title/Summary/Keyword: Seismic guideline

Search Result 77, Processing Time 0.023 seconds

Standard and Guideline for Installation and Management of Earthquake Instruments for Each Facilities (시설물별 지진응답계측기 설치 운영에 관한 기준 및 지침)

  • 김재관
    • Proceedings of the Earthquake Engineering Society of Korea Conference
    • /
    • 2000.04a
    • /
    • pp.458-467
    • /
    • 2000
  • The standard of performance-based seismic design accepted by Ministry of Construction and Transport requires to install and manage earthquake instruments for the facilities of seismic category I and to acquire earthquake response data of these facilities at earthquake events. So detailed standard and guideline for installation and management of earthquake instruments for each facilities according to the seismic design standard are getting ready. This paper presents the part of installation locations of sensors in that detaile standard and guideline.

  • PDF

Development and Application of Guideline for Construction Management of School Building Seismic Retrofit (학교 건축물 내진보강 시공현장 관리를 위한 가이드라인 개발 및 적용에 관한 연구)

  • Hwang, Eun-A;Lee, Byoung-Ho;Park, Ku-Byoung
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2020.06a
    • /
    • pp.36-37
    • /
    • 2020
  • The government seismic retrofit project for educational facilities is progressing more actively due to the 2018 Pohang earthquake. It is most important that seismic retrofit constructions are conformed to seismic design to achieve the desired purpose of the project as reduce direct damage caused by earthquake. However, the construction supervision system is not mandatory for the retrofit construction site of small buildings including school buildings according to applicable laws and regulations. The purpose of this study was to develop a guide for constructions management of school building seismic retrofit. In order to achieve this goal, the survey on the construction site was conducted and various problems related to the construction site of school building seismic retrofit was derived Additionally, the systematic checklist was presented according to the user and seismic reinforcement method.

  • PDF

Seismic Fragility of Low-rise Piloti Buildings Designed According to KDS 41 17 00 (KDS 41 17 00에 따라 설계된 저층 필로티 건물의 지진 취약도)

  • Joo, Changhyeok;Kim, Taewan
    • Journal of the Earthquake Engineering Society of Korea
    • /
    • v.26 no.2
    • /
    • pp.49-58
    • /
    • 2022
  • The 2017 Pohang earthquake caused severe damage to low-rise piloti buildings. The damage was caused mainly by column shear failure, and some core walls were as well. The damaged piloti buildings in Pohang City could be relieved if they were designed correctly according to the standards at that time. However, the post-earthquake investigation revealed design, construction, and permission problems. To solve the problems, the Piloti Building Structure Design Guidelines that include strict specifications were published in 2018. Separately, KDS 41 17 00, the seismic design standard for buildings, was enacted in 2019 and it included the guideline contents. Therefore, at least after the publication of the guidelines, piloti buildings, designed by the standard and guidelines, can be expected to possess better seismic performance than existing piloti buildings. To confirm this, the probability of exceedance for several damage state thresholds was estimated for existing and designed piloti buildings. As a result, the probability of damage of designed piloti buildings was very low compared to existing ones. Consequently, it was confirmed that the guideline and standard adequately supplement the structural fragility of existing piloti buildings.

A Basic Study on Comparison Analysis of Seismic Reinforcement Method Guideline between Domestic and Foreign Educational Facilities (국내외 교육시설물 내진보강공법 가이드라인 비교분석 기초연구)

  • Lee, Joo-Hyeong;Jeon, Sang-Sub;Son, Ki-Young;Son, Seung-Hyun;Na, Young-Ju
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2019.05a
    • /
    • pp.85-86
    • /
    • 2019
  • Recently, the educational facilities were 45% among total damaged facilities from the Po-Hang earthquake. Consequently, the seismic reinforcement of existing educational facilities were ended up attracting people's interesting. However, research is insufficient to consider that how far technology has been developed. Therefore, the purpose of this study is to investigate the level of domestic guideline research by comparing to foreign guidelines in regard to seismic reinforcement methods applicable to existing educational facilities. To achieve the objective, first, the current status of seismic reinforcement projects in domestic educational facilities was analyzed. Second, the domestic and foreign seismic reinforcement methods guidelines for structural, non-structural was compared. Third, the improvement directions for future guidelines were suggested. As a results, the improvement directions of domestic seismic reinforcement methods guidelines were proposed. First, the structural seismic reinforcement strategy needs to be segmented. Second, it is necessary to analyze about non-structural guidelines based on additional cases. In the future, this study can be used as a basic material for developing seismic reinforcement methods guidelines in domestic existing educational facilities.

  • PDF

Validation of Practical Applicability of Pseudo-resonance Method for Seismic Design of Substation Equipment (변전설비 내진설계를 위한 유사공진법의 적용성 검증)

  • 조양희;조성국;박형기;권경일
    • Proceedings of the Earthquake Engineering Society of Korea Conference
    • /
    • 2003.09a
    • /
    • pp.49-57
    • /
    • 2003
  • Lately, a guideline for seismic design of electric substation facilities has been newly prepared and issued. The guideline adopts a new simplified dynamic analysis technique called "pseudo-resonance method" from the design code of Japan. The method can effectively consider resonance effect of structural system during earthquake motion. However, reliability and practical applicability of the method have not been fully guaranteed under the different seismic and engineering situations in Korea. This paper presents a validation study of the pseudo-resonance method for practical seismic analysis. For this purpose, various parametric studies have been performed using recorded earthquake motions and idealized substation equipment models. The results showed that the pseudo-resonance method can be effectively used for the practical seismic design of substation facilities in Korea.

  • PDF

Development of Guidelines for seismic isolation Design of LMR (액체금속로 면진설계를 위한 지침서 개발)

  • Yoo, Bong;Koo, Gyeong-Hoi;Lee, Jae-Han
    • Proceedings of the Earthquake Engineering Society of Korea Conference
    • /
    • 1998.04a
    • /
    • pp.147-154
    • /
    • 1998
  • The purpose of this paper is to propose the draft guidelines of seismic isolation design of Liquid Metal Reactor (LMR) using high damping laminated rubber bearings. The scopes of guidelines include design requirements of a seismically isolated system and components, seismic isolator, isolation system, interface system between seismic isolation and non-seismic isolation part, qualification and acceptance tests of seismic isolator, seismic isolation reliability, and seismic safety and monitoring system. Proposed guidelines shall be revised to extend to general design guideline for nuclear facilities by further research and discussions.

  • PDF

Comparative Study on Seismic Design of Soil-Reinforced Segmental Retaining Walls (블록식 보강토 옹벽의 내진설계에 관한 비교연구)

  • 유충식
    • Journal of the Korean Geotechnical Society
    • /
    • v.16 no.4
    • /
    • pp.51-61
    • /
    • 2000
  • This paper reviews fundamentals of a pseudo-static seismic design/analysis method for soil-reinforced segmental retaining walls. A comparative study on NCMA and FHWA seismic design guidelines, which are one of the most well known design guidelines for mechanically stabilized earth walls, was also performed. The results demonstrate that there exist significant discrepancies in the results of external stability analysis despite the same calculation model used in the two guidelines, due primarily to different seismic coefficient selection criteria. It is also demonstrated that the internal stability calculation model for NCMA guideline tends to yield larger seismic reinforcement force in the shallower reinforcement layers, resulting in an increased number of reinforcement layers at the top of reinforced wall and increased reinforcement lengths to ensure adequate anchorage capacity. The internal stability calculation model adopted by FHWA guideline, however, leads to redistribution of dynamic force to the lower reinforcement layers and thus results n an opposite trend of NCMA guideline. Findings from this study clearly demonstrate a need for more in-depth studies to develop a generally acceptable design/analysis method.

  • PDF

Post-Earthquake Damage Evaluation for R/C Buildings Based on Residual Seismic Capacity (지진피해를 받은 철근콘크리트 건물의 지진피해도 판정)

  • Lee Kang Seok;Kang Dae-Eon
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2005.11a
    • /
    • pp.109-112
    • /
    • 2005
  • In this paper described is the basic concept of the Guideline for Post-earthquake Damage Assessment of RC buildings, revised in 2001, in Japan. This paper discusses the damage rating procedures based on the residual seismic capacity index R, the ratio of residual seismic capacity to the original capacity, that is consistent with the Japanese Standard for Seismic Evaluation of Existing RC Buildings, and their validity through calibration with observed damage due to the 1995 Hyogoken-Nambu (Kobe) earthquake. Good agreement between the residual seismic capacity ratio and damage levels was observed.

  • PDF

Seismic response of RC frame structures strengthened by reinforced masonry infill panels

  • Massumi, Ali;Mahboubi, Behnam;Ameri, Mohammad Reza
    • Earthquakes and Structures
    • /
    • v.8 no.6
    • /
    • pp.1435-1452
    • /
    • 2015
  • The performance of masonry infilled frames during the past earthquakes shows that the infill panels play a major role as earthquake-resistant elements. Experimental observations regarding the influence of infill panels on increasing stiffness and strength of reinforced concrete structures reveal that such panels can be used in order to strengthen reinforced concrete frames. The present study examines the influence of infill panels on seismic behavior of RC frame structures. For this purpose, several low- and mid-rise RC frames (two-, four-, seven-, and ten story) were numerically investigated. Reinforced masonry infill panels were then placed within the frames and the models were subjected to several nonlinear incremental static and dynamic analyses. In order to determine the acceptance criteria and modeling parameters for frames as well as reinforced masonry panels, the Iranian Guideline for Seismic Rehabilitation of Existing Masonry Buildings (Issue No. 376), the Iranian Guideline for Seismic Rehabilitation of Existing Structures (Issue No. 360) and FEMA Guidelines (FEMA 273 and 356) were used. The results of analyses showed that the use of reinforced masonry infill panels in RC frame structures can have beneficial effects on structural performance. It was confirmed that the use of masonry infill panels results in an increment in strength and stiffness of the framed buildings, followed by a reduction in displacement demand for the structural systems.

Structural Analysis of a Breakwater in Wave and Seismic Loads (파랑하중과 지진하중하의 방파제 구조해석)

  • Cho, Kyu-Nam
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.22 no.1
    • /
    • pp.45-52
    • /
    • 2009
  • In this paper, a guideline for designing breakwater in wave loads and in seismic loads is proposed. A simple model structure in breaking wave zone is examined using Morison equation in consideration with the effect of an impact load, for evaluation of the wave loads. As the impact load effect is not significant, pressure distributions according to Goda are applied for evaluation of wave loads on breakwater. Structural behavior of breakwater in wave loads can be obtained using the Goda method, as well. For seismic analysis, Ofunato and Hachinohe models, as well as an artificial seismic acceleration loads model, are adopted. Soil-structure interaction analysis is carried out to find the seismic load effect. It is found that, in certain cases, structural deformation in wave loads is in the same level as deformation that in seismic loads. Thus, it is our recommendation that these two loads are considered at the same level in breakwater design.