• Title/Summary/Keyword: Seismic design code

Search Result 480, Processing Time 0.022 seconds

SEismic Performance of Circular RC Bridge Piers designed in Moderate on low Seismic Zone (중.약진 지역의 원형 내진 RC 교각의 내진성능평가)

  • 박종협;조창백;박희상;정영수
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2000.04a
    • /
    • pp.452-457
    • /
    • 2000
  • This research aims at evaluating the seismic performance of the existing R/C bridge piers, which were seismically designed in accordance with the provision of moderate confinement design code (Eurocode 8). The work presented in this paper experimentally investigates the ductility and hysteretic behavior of circular reinforced concrete columns with moderate confinement. Pseudo-dynamic tests have been carried out on two scaled R/C column specimens to investigate their hysteretic behavior and other seismic performance.

  • PDF

Seismic Analysis of an Axial Blower Using a Commercial FEM Code (상용 유한요소해석 프로그램을 이용한 축류송풍기의 내진해석)

  • 정진태;임형빈;김강성;허진욱
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.12 no.3
    • /
    • pp.181-186
    • /
    • 2002
  • A seismic analysis is one of crucial design procedures of an axial blower used in nuclear power Plants. The blower should be operated even in ar emergency such as an earthquake. The blower should be designed in order to stand against an earthquake. For the seismic analysis, Ive perform the modal analysis and then evaluate the required response spectrum (PRS) from the given floor response spectrum (FRS). A finite element model of the blower is established by using a commercial FEM code of ANSYS. After the finite element modeling. the natural frequencies. the mode shapes and the participation factors are obtained from the modal analysis. The PRS is acquired by a numerical approach on the basis of the principle of mode superposition. We verify the structura safety of the axial blower and confirm the validity of the present seismic analysis results.

Seismic Evaluation for Strainer in the Primary Cooling System (일차 냉각계통 스트레이너에 대한 내진 건전성 평가)

  • 정철섭
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.13 no.3
    • /
    • pp.295-304
    • /
    • 2000
  • To evaluate the structural integrity for the strainer under seismic loading the seismic analysis and design were performed for T-type strainer in accordance with ASME, Section Ⅲ, Class 3(ND). Since there are no specified design requirements for the strainer in ASME Code, the strainer body was analysed according to ND-3500, valve design. Flanged joints connected with PCS piping were designed according to ND-3658.3. And the criteria for the cover flange was governed by the Appendix XI. Both a frequency analysis and an equivalent static seismic analysis of the strainer were carried out using the finite element computer program, ANSYS. The frequency analysis results show the fundamental natural frequency is greater than 33Hz, thus justifying the use of the equivalent static analysis through which membrane and bending stresses are obtained in the critical points near the branch connection area. The results of the seismic evaluation fully satisfied with the structural acceptance criteria of the ASME Code. Accordingly the structural integrity on the strainer body and flanges were proved.

  • PDF

Quantifying the seismic resilience of two tall buildings designed using Chinese and US Codes

  • Tian, Yuan;Lu, Xiao;Lu, Xinzheng;Li, Mengke;Guan, Hong
    • Earthquakes and Structures
    • /
    • v.11 no.6
    • /
    • pp.925-942
    • /
    • 2016
  • With ongoing development of earthquake engineering research and the lessons learnt from a series of strong earthquakes, the seismic design concept of "resilience" has received much attention. Resilience describes the capability of a structure or a city to recover rapidly after earthquakes or other disasters. As one of the main features of urban constructions, tall buildings have greater impact on the sustainability and resilience of major cities. Therefore, it is important and timely to quantify their seismic resilience. In this work, a quantitative comparison of the seismic resilience of two tall buildings designed according to the Chinese and US seismic design codes was conducted. The prototype building, originally designed according to the US code as part of the Tall Building Initiative (TBI) Project, was redesigned in this work according to the Chinese codes under the same design conditions. Two refined nonlinear finite element (FE) models were established for both cases and their seismic responses were evaluated at different earthquake intensities, including the service level earthquake (SLE), the design-based earthquake (DBE) and the maximum considered earthquake (MCE). In addition, the collapse fragility functions of these two building models were established through incremental dynamic analysis (IDA). Based on the numerical results, the seismic resilience of both models was quantified and compared using the new-generation seismic performance assessment method proposed by FEMA P-58. The outcomes of this study indicate that the seismic resilience of the building according to the Chinese design is slightly better than that according to the US design. The conclusions drawn from this research are expected to guide further in-depth studies on improving the seismic resilience of tall buildings.

A Study on the Seismic Resistance of Fill-dams by Newmark-type Deformation Analysis (Newmark 기반 변형해석에 의한 필댐의 내진저항성 연구)

  • Park, Dong Soon
    • Journal of the Earthquake Engineering Society of Korea
    • /
    • v.18 no.4
    • /
    • pp.161-170
    • /
    • 2014
  • Newmark-type deformation analysis has rarely been done in Korea due to the popularity of simple pseudo-static limit equilibrium analysis and detailed time-history FE/FD dynamic analysis. However, the Korean seismic dam design code updated in 2011 prescribes Newmark-type deformation analysis as a major dynamic analysis method for the seismic evaluation of fill dams. In addition, a design PGA for dynamic analysis is significantly increased in the code. This paper aims to study the seismic evaluation of four existing large fill dams through advanced FEM/Newmark-type deformation analyses for the artificial earthquake time histories with the design PGA of 0.22g. Dynamic soil properties obtained from in-situ geo-physical surveys are applied as input parameters. For the FEM/Newmark analyses, sensitivity analyses are performed to study the effects of input PGA and $G_{max}$ of shell zone on the Newmark deformation. As a result, in terms of deformation, four fill dams are proved to be reasonably safe under the PGA of 0.22g with yield coefficients of 0.136 to 0.187, which are highly resistant for extreme events. Sensitivity analysis as a function of PGA shows that $PGA_{30cm}$ (a limiting PGA to cause the 30 cm of Newmark permanent displacement on the critical slip surface) is a good indicator for seismic safety check. CFRD shows a higher seismic resistance than ECRD. Another sensitivity analysis shows that $G_{max}$ per depth does not significantly affect the site response characteristics, however lower $G_{max}$ profile causes larger Newmark deformation. Through this study, it is proved that the amplification of ground motion within the sliding mass and the location of critical slip surface are the dominant factors governing permanent displacements.

Seismic fragility curves of single storey RC precast structures by comparing different Italian codes

  • Beilic, Dumitru;Casotto, Chiara;Nascimbene, Roberto;Cicola, Daniele;Rodrigues, Daniela
    • Earthquakes and Structures
    • /
    • v.12 no.3
    • /
    • pp.359-374
    • /
    • 2017
  • The seismic events in Northern Italy, May 2012, have revealed the seismic vulnerability of typical Italian precast industrial buildings. The aim of this paper is to present a seismic fragility model for Italian RC precast buildings, to be used in earthquake loss estimation and seismic risk assessment by comparing two building typologies and three different codes: D.M. 3-03-1975, D.M. 16-01-1996 and current Italian building code that has been released in 2008. Based on geometric characteristics and design procedure applied, ten different building classes were identified. A Monte Carlo simulation was performed for each building class in order to generate the building stock used for the development of fragility curves trough analytical method. The probabilistic distributions of geometry were mainly obtained from data collected from 650 field surveys, while the material properties were deduced from the code in place at the time of construction or from expert opinion. The structures were modelled in 2D frameworks; since the past seismic events have identified the beam-column connection as the weakest element of precast buildings, two different modelling solutions were adopted to develop fragility curves: a simple model with post processing required to detect connection collapse and an innovative modelling solution able to reproduce the real behaviour of the connection during the analysis. Fragility curves were derived using both nonlinear static and dynamic analysis.

Assessment of Code-specified Ground Motion Selection Criteria with Accurate Selection and Scaling Methods - II Seismic Response (구조물 동적해석을 위한 현행 내진설계기준의 입력 지반 운동 선정 조건 타당성 평가 - II 지진응답)

  • Ha, Seong Jin;Han, Sang Whan;Oh, Jang Hyun
    • Journal of the Earthquake Engineering Society of Korea
    • /
    • v.21 no.4
    • /
    • pp.181-188
    • /
    • 2017
  • Current seismic design provisions such as ASCE 7-10 provide criteria for selecting ground motions for conducting response history analysis. This study is the sequel of a companion paper (I - Ground Motion Selection) for assessment of the ASCE 7-10 criteria. To assess of the ASCE 7-10 criteria, nonlinear response history analyses of twelve single degree of freedom (SDF) systems and one multi-degree of freedom (MDF) system are conducted in this study. The results show that the target seismic demands for SDF can be predicted using the mean seismic demands over seven and ten ground motions selected according to the proposed method within an error of 30% and 20%, respectively

The need for upgrading the seismic performance objectives

  • Kutanis, Mustafa;Boru, Elif Orak
    • Earthquakes and Structures
    • /
    • v.7 no.4
    • /
    • pp.401-414
    • /
    • 2014
  • The economic consequences of large earthquakes require a revolutionary change in the seismic performance objective of residential and commercial buildings. The majority of total construction costs consist of non-structural and architectural costs. Therefore, the aim of this research is to upgrade current Life Safety performance objectives and to offset adverse effects on country's economy after an occurrence of large earthquakes. However, such a proposal cannot easily prove the feasibility of cost-benefit analysis in structural design. In this paper, six generic reinforced concrete frames and dual system structures designed based on Turkish Seismic Code were used in cost analysis. The study reveals that load bearing structural systems with Immediate Occupancy performance level in seismic zones can be achieved with negligible costs.

Sensitivity analysis of probabilistic seismic behaviour of wood frame buildings

  • Gu, Jianzhong
    • Earthquakes and Structures
    • /
    • v.11 no.1
    • /
    • pp.109-127
    • /
    • 2016
  • This paper examines the contribution of three sources of uncertainties to probabilistic seismic behaviour of wood frame buildings, including ground motions, intensity and seismic mass. This sensitivity analysis is performed using three methods, including the traditional method based on the conditional distributions of ground motions at given intensity measures, a method using the summation of conditional distributions at given ground motion records, and the Monte Carlo simulation. FEMA P-695 ground motions and its scaling methods are used in the analysis. Two archetype buildings are used in the sensitivity analysis, including a two-storey building and a four-storey building. The results of these analyses indicate that using data-fitting techniques to obtain probability distributions may cause some errors. Linear interpolation combined with data-fitting technique may be employed to improve the accuracy of the calculated exceeding probability. The procedures can be used to quantify the risk of wood frame buildings in seismic events and to calibrate seismic design provisions towards design code improvement.

Performance-based seismic evaluation and practical retrofit techniques for buildings in China

  • Wang, Hao;Sun, Baitao;Chen, Hongfu
    • Earthquakes and Structures
    • /
    • v.22 no.5
    • /
    • pp.487-502
    • /
    • 2022
  • China is prone to earthquake disasters, and the higher seismic performance is required by many existing civil buildings. And seismic evaluation and retrofit are effective measures to mitigate seismic hazards. With the development of performance-based seismic design and diverse retrofit technology for buildings, advanced evaluation methods and retrofit strategies are in need. In this paper, we introduced the evolution of seismic performance objectives in China combined with performance-based seismic design. Accordingly, multi-phase evaluation methods and comprehensive seismic capacity assessment are introduced. For buildings with seismic deficiency or higher performance requirements, the retrofit technologies are categorized into three types: component strengthening, system optimization, and passive control. Both engineering property and social property for the retrofit methods are discussed. The traditional seismic retrofit methods usually are costly and disturbing, and for example in Beijing, seismic strengthening costs approx. 1000 RMB/m2 (for 160 USD/m2), for hospital building even more expensive as 5000 RMB/m2(for 790 USD/m2). So cost-efficient and little disturbance methods are promising techniques. In the end, some opinions about the retrofit strategy and schemes category are shared and wish to discuss the situation and future of seismic retrofit in China.