• Title/Summary/Keyword: Seismic deformation method

Search Result 243, Processing Time 0.025 seconds

Design and Characteristics of cryogenic ball valve (초저온 볼 밸브 설계 및 특성)

  • Kim, Dong-Soo;Kim, Myoung-Sub
    • Proceedings of the KSME Conference
    • /
    • 2007.05a
    • /
    • pp.666-671
    • /
    • 2007
  • To acquire the safety along with durability of mechanical machinery products, we should consider the structural mechanics such as stress, deformation and dynamic vibration characteristics and identify those important aspects in the stage of preliminary design engineering. This cryogenic ball valve is used to transfer the liquified natural gas which temperature is $-196^{\circ}C$, supplied pressure is $168kg/cm^2$. For the cryogenic ball valve, the assurance of structural integrity and operability are essential to meet not only normal, abnormal loading conditions but also functionality during a seismic event. In this thesis, analytical approach and results using finite element analysis and computational method are herein presented to evaluate the aspects of structural integrity along with operability of cryogenic ball valve. In this study, we designed the high pressure cryogenic ball valve that accomplishes zero leakage by elastic seal at normal temperature and metal seal at high temperature.

  • PDF

The effect of soil-structure interaction on inelastic displacement ratio of structures

  • Eser, Muberra;Aydemir, Cem
    • Structural Engineering and Mechanics
    • /
    • v.39 no.5
    • /
    • pp.683-701
    • /
    • 2011
  • In this study, inelastic displacement ratios and ductility demands are investigated for SDOF systems with period range of 0.1-3.0 s. with elastoplastic behavior considering soil structure interaction. Earthquake motions recorded on different site conditions such as rock, stiff soil, soft soil and very soft soil are used in analyses. Soil structure interacting systems are modeled with effective period, effective damping and effective ductility values differing from fixed-base case. For inelastic time history analyses, Newmark method for step by step time integration was adapted in an in-house computer program. Results are compared with those calculated for fixed-base case. A new equation is proposed for inelastic displacement ratio of interacting system ($\tilde{C}_R$) as a function of structural period of interacting system ($\tilde{T}$), strength reduction factor (R) and period lengthening ratio ($\tilde{T}/T$). The proposed equation for $\tilde{C}_R$ which takes the soil-structure interaction into account should be useful in estimating the inelastic deformation of existing structures with known lateral strength.

Ductility of open piled wharves under reversed cyclic loads

  • Yokota, Hiroshi;El-Bakry, Hazem M.F.
    • Structural Engineering and Mechanics
    • /
    • v.12 no.6
    • /
    • pp.615-632
    • /
    • 2001
  • Ductility of open piled wharves under reversed cyclic loads has been investigated. Experimental testing of five wharf models having a scale of about 1:4 was conducted under the application of horizontal reversed cyclic loading. The experiments were designed to focus on the horizontal ultimate load, ductility and failure mode of the considered wharf models. Nonlinear numerical analyses using the finite element method were also performed on numerical models representing the experimentally tested wharves. The results of the experimental tests showed that open piled wharves possessed favourable ductile behaviour and that their load bearing capacity did not depreciate until a ductility factor of 3 to 4 was reached. The numerical analysis showed that the relative rotation that took place at the joints between the steel piles and the R.C. beam was responsible for a considerable portion of the total horizontal deformation of the wharves. Therefore, it was concluded that introducing the joint stiffness in calculating the deformations of open piled wharves was important to achieve reasonable accuracy.

Application of Hybrid Structural System Using Coupled Vibration Control Structure and Seismic Isolated Structure in High-Rise Building

  • Nakajima, Shunsuke
    • International Journal of High-Rise Buildings
    • /
    • v.10 no.3
    • /
    • pp.219-227
    • /
    • 2021
  • This building is a forty-eight story, 170 meters high multiple dwelling house with Dual Frame System (DFS), a coupled vibration system connecting two independent structures with hydraulic dampers. Generation of large deformation between two structures during earthquakes contributes to make the hydraulic dampers effective. To improve the aseismic performance more, this building adopts DFS hybrid system that consists of DFS and base isolation system. About typical floors, columns and beams are constructed with LRV precast concrete method that shorten the construction period greatly by integrating column-beam joints in column members.

Determining minimum non-connected concrete panel thickness and concrete type impact on seismic behavior of CSPSW

  • Mehdi Ebadi-Jamkhaneh
    • Structural Engineering and Mechanics
    • /
    • v.91 no.6
    • /
    • pp.607-626
    • /
    • 2024
  • This study explores the use of advanced concrete types to improve the performance of composite steel shear walls (CSPSWs), particularly in delaying cracking and failure. A two-phase approach is implemented. Phase I utilizes non-linear finite element analysis and Gene Expression Programming to develop a novel method for determining the minimum concrete thickness required in CSPSWs. Phase II investigates the effect of concrete type, opening area, and location on the behavior of CSPSWs with openings. The results demonstrate that ultra-high performance concrete (UHPFRC) significantly reduces out-of-plane displacement and tensile cracking compared to normal concrete. Additionally, the study reveals a strong correlation between opening position and load-bearing capacity, with position L3 exhibiting the greatest reduction as opening size increases. Finally, UHPFRC's superior energy dissipation translatesto a higher equivalent viscous damping coefficient.

A Methodology of Seismic Damage Assessment Using Capacity Spectrum Method (능력 스펙트럼법을 이용한 건물 지진 손실 평가 방법)

  • Byeon, Ji-Seok
    • Journal of the Earthquake Engineering Society of Korea
    • /
    • v.9 no.3 s.43
    • /
    • pp.1-8
    • /
    • 2005
  • This paper describes a new objective methodology of seismic building damage assessment which is called Advanced Component Method(ACM). ACM is a major attempt to replace the conventional loss estimation procedure, which is based on subjective measures and the opinions of experts, with one that objectively measures both earthquake intensity and the response ol buildings. First, response of typical buildings is obtained analytically by nonlinear seismic static analysis, push-over analyses. The spectral displacement Is used as a measure of earthquake intensity in order to use Capacity Spectrum Method and the damage functions for each building component, both structural and non-structural, are developed as a function of component deformation. Examples of components Include columns, beams, floors, partitions, glazing, etc. A repair/replacement cost model is developed that maps the physical damage to monetary damage for each component. Finally, building response, component damage functions, and cost model were combined probabilistically, using Wonte Carlo simulation techniques, to develop the final damage functions for each building type. Uncertainties in building response resulting from variability in material properties and load assumptions were incorporated in the Latin Hypercube sampling technique. The paper also presents and compares ACM and conventional building loss estimation based on historical damage data and reported loss data.

Ductility Relationship of RC Bridge Columns under Seismic Loading (지진하중을 받는 철근콘크리트 교각의 연성도 상관관계)

  • 손혁수;이재훈
    • Journal of the Earthquake Engineering Society of Korea
    • /
    • v.7 no.4
    • /
    • pp.51-61
    • /
    • 2003
  • This research is a park of a research program to develope a new design method for reinforced concrete bridge columns under axial load and cyclic lateral load. The objectives of this paper are to investigate the relationship between curvature ductility and displacement ductility and to propose a correlation equation for designing of reinforced concrete bridge columns under axial load and cyclic lateral load. Computer program NARCC was used for parametric study, which was proved to provide good and conservative analytical result especially for deformation capacity and ductility factor compared with test result. A total of 7,200 spirally reinforced concrete columns were selected considering the main variables such as section diameter, aspect ratio, concrete strength, yielding strength of longitudinal and confinement steel, longitudinal steel ratio, axial load ratio, and confinement steel ratio. A new equation between curvature ductility factor displacement ductility factor with the aspect ratio was proposed by investigation of 21,600 data produced from the selected column models by applying 3 different definitions of yield displacement.

Distribution of Optimum Yield-Strength and Plastic Strain Energy Prediction of Hysteretic Dampers in Coupled Shear Wall Buildings

  • Bagheri, Bahador;Oh, Sang-Hoon;Shin, Seung-Hoon
    • International journal of steel structures
    • /
    • v.18 no.4
    • /
    • pp.1107-1124
    • /
    • 2018
  • The structural behavior of reinforced concrete coupled shear wall structures is greatly influenced by the behavior of their coupling beams. This paper presents a process of the seismic analysis of reinforced concrete coupled shear wall-frame system linked by hysteretic dampers at each floor. The hysteretic dampers are located at the middle portion of the linked beams which most of the inelastic damage would be concentrated. This study concerned particularly with wall-frame structures that do not twist. The proposed method, which is based on the energy equilibrium method, offers an important design method by the result of increasing energy dissipation capacity and reducing damage to the wall's base. The optimum distribution of yield shear force coefficients is to evenly distribute the damage at dampers over the structural height based on the cumulative plastic deformation ratio of the dissipation device. Nonlinear dynamic analysis indicates that, with a proper set of damping parameters, the wall's dynamic responses can be well controlled. Finally, based on the total plastic strain energy and its trend through the height of the buildings, a prediction equation is suggested.

Research on a novel shear lead damper: Experiment study and design method

  • Chong, Rong; Wenkai, Tian;Peng, Wang;Qingxuan, Shi
    • Steel and Composite Structures
    • /
    • v.45 no.6
    • /
    • pp.865-876
    • /
    • 2022
  • The slit members have lower strength and lower stiffness, which might lead to lower energy dissipation. In order to improve the seismic performance of the slit members, the paper proposes the shear lead damper, which has stable performance and small deformation energy dissipation capacity. Therefore, the shear lead damper can set in the vertical silts of the slit member to transmit the shear force and improve energy dissipation, which is suitable for the slit member. Initially, the symmetrical teeth-shaped lead damper was tested and analyzed. Then the staggered teeth-shaped lead dampers were developed and analyzed, based on the defect analysis and build improvements of the symmetrical specimen. Based on the parameter analysis, the main influence factors of hysteretic performance are the internal teeth, the steel baffles, and the width and length of damper. Finally, the theoretical analysis was presented on the hysteretic curve. And the skeleton curve and hysteresis path were identified. Based on the above theoretical analysis, the design method was proposed, including the damping force, the hysteresis model and the design recommendations.

Study on the Geotechnical Characteristics of Granite in Korea and their Correlation with Rock Classification Method (국내 화강암의 지반공학적 특성 및 암반분류법과의 상관성에 관한 연구)

  • SunWoo, Choon;Ryu, Dong-Woo;Kim, Hyung-Mok;Kim, Ki-Seog
    • Tunnel and Underground Space
    • /
    • v.21 no.3
    • /
    • pp.205-215
    • /
    • 2011
  • In this study, we analyzed physical properties of granites and their correlation with rock mass classification methods. The granite samples were obtained from field survey, in-situ borehole tests and laboratory tests for a design phase of various roads, railways and other civil engineering works in Korea. Among the measured physical properties, the results of unit weight, compressive strength, tensile strength, seismic velocity, cohesion, friction angle, elastic modulus and deformation modulus were introduced. We also correlated these properties with the compressive strength. The results of different rock classification method of RQD, RMR, and Q-system against the granites in Korea were compared with each other, and the correlation equations were proposed in a more simplified form. We also derived RMR values using the compressive strength as well as the RQD values of in-situ drilled cores, and estimated the deformation modulus of in-situ rock mass in terms of the RMR values.