• Title/Summary/Keyword: Seismic behaviour

Search Result 280, Processing Time 0.036 seconds

Quasi-Static Test for Seismic Performance of R/C Bridge Piers with Lap Splices (준정적실험에 의한 겹이음된 철근콘크리트 교각의 내진성능 평가)

  • Chung, Young-Soo;Lee, Jae-Hyung;Kim, Yong-Gon;Kim, Hoon
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2001.05a
    • /
    • pp.877-882
    • /
    • 2001
  • Lap splice in plastic hinge region of RC bridge piers is inevitable because of the constructional joint between footing and column. RC circular columns with lap-splice in plastic hinge region are widely used in Korean highway bridges. It is, however, believed that there are not many experimental research works for nonlinear behavior of these columns subjected to earthquake motions. This study has been performed to verify the effect of axial force, lap splice and confinement steel ratio for the seismic behaviour of reinforced concrete bridge piers. Quasi-static test have been done to investigate the physical seismic performance of RC bridge piers, such as displacement ductility and enemy absorption.

  • PDF

Seismic Performance of Flexural-Shear Circular Reinforced Concrete Bridge Piers (휨전단 거동을 보이는 원형 RC교각의 내진성능평가)

  • Song, Ho-Jin;Chung, Young-Soo;Kim, Yon-Gon;Kim, Hoon;Kim, Dae-Ho
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2002.05a
    • /
    • pp.823-828
    • /
    • 2002
  • Lap splice in plastic hinge region of RC bridge piers is inevitable because of the constructional joint between footing and column. RC circular columns with lap-splice in plastic hinge region are widely used in Korean highway bridges. It is, however, believed that there we not many experimental research works for nonlinear behavior of these columns subjected to earthquake motions. This study has been peformed to verify the effect of lap splice and confinement steel ratio for the seismic behaviour of reinforced concrete bridge piers. Quasi-static test have been done to investigate the physical seismic performance of RC bridge piers, such as displacement ductility.

  • PDF

Characteristic Behavior of High-Strength Reinforced Concrete Bridge Column under Simulated Seismic Loading (고강도 철근콘크리트 교각의 내진거동특성)

  • Ra Hong-Seong;Lee Kyoung-Joon;Ryu Hyo-Jin;Hwang Sun-Kyoung;Lee Chin-Ok
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2004.05a
    • /
    • pp.22-27
    • /
    • 2004
  • This experimental investigation was conducted to examine the seismic performance of reinforced concrete bridge columns. The columns were subjected to a constant axial load and a cyclic horizontal load-inducing reversed bending moment. The variables studied in this research are the volumetric ratio of transverse reinforcement (ps = 0.96, 1.44 per cent) and axial load ratio (0.05, 0.1, 0.2 P/Po) and strength $(350kgf/cm^2,\;600kgf/cm^2)$. Test results show that bridge columns with 50 per cent higher amounts of transverse reinforcement than that required by seismic provisions of ACI 318-02 showed ductile behaviour. For bridge columns with axial load ratio(P/Po) less than 0.2, the ratio of Mmax over Mad, nominal moment capacity predicted by ACI 318-02 provisions, is consistently greater than 1 with approximately a 20 percent margin of safty.

  • PDF

Seismic vulnerability assessment of masonry facade walls: development, application and validation of a new scoring method

  • Ferreira, Tiago M.;Vicentea, Romeu;Varum, Humberto
    • Structural Engineering and Mechanics
    • /
    • v.50 no.4
    • /
    • pp.541-561
    • /
    • 2014
  • This paper approaches the issue of seismic vulnerability assessment strategies for facade walls of traditional masonry buildings through the development of a methodology and its subsequent application to over 600 building facades from the old building stock of the historic city centre of Coimbra. Using the post-earthquake damage assessment of masonry buildings in L'Aquila, Italy, an analytical function was developed and calibrated to estimate the mean damage grade for masonry facade walls. Having defined the vulnerability function for facade walls, damage scenarios were calculated and subsequently used in the development of an emergency planning tool and in the elaboration of an access route proposal for the case study of the historic city centre of Coimbra. Finally, the methodology was pre-validated through the comparison of a set of results obtained from its application and also resourcing to a widely accepted mechanical method on the description of the out-of-plane behaviour of facade walls.

An Experimental Study on Seismic Performance of Reinforced Concrete Bridge Columns under Lateral Cyclic Load (반복 횡하중을 받는 철근콘크리트 교각의 내진성능에 관한 실험적 연구)

  • 이진옥;윤현도;황선경;류효진;나홍성;이경준
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2003.11a
    • /
    • pp.161-164
    • /
    • 2003
  • This experimental investigation was conducted to examine the seismic performance of reinforced concrete bridge columns. The columns were subjected to a constant axial load and a cyclic horizontal load-inducing reversed bending moment. The variables studied in this research are the volumetric ratio of transverse reinforcement ($P_s$ =0.96, 1.44 per cent) and axial load ratio (0.05, 0.1, 0.2 P/$P_o$). Test results show that bridge columns with 50 per cent higher amounts of transverse reinforcement than that required by seismic provisions of ACI 318-02 showed ductile behaviour. For bridge columns with axial load ratio(P/$P_o$) less than 0.2, the ratio of $M_{max}$ over $M_{aci}$, nominal moment capacity predicted by ACI 318-02 provisions, is consistently greater than 1 with approximately a 20 percent margin of safty.

  • PDF

A probabilistic analytical seismic vulnerability assessment framework for substandard structures in developing countries

  • Kyriakides, Nicholas;Ahmad, Sohaib;Pilakoutas, Kypros;Neocleous, Kyriacos;Chrysostomou, Christis
    • Earthquakes and Structures
    • /
    • v.6 no.6
    • /
    • pp.665-687
    • /
    • 2014
  • This paper presents a framework for analytical seismic vulnerability assessment of substandard reinforced concrete (RC) structures in developing countries. Amodified capacity-demand diagram method is used to predict the response of RC structures with degrading behaviour. A damage index based on period change is used to quantify the evolution of damage. To demonstrate the framework, a class of substandard RC buildings is examined. Abrupt accumulation of damage is observed due to the brittle failure modes and this is reflected in the developed vulnerability curves, which differ substantially from the curves of ductile structures.

Seismic Fragility Analysis of Deteriorated Reinforced Concrete Beams in Nuclear Power Plants (열화를 고려한 원자력발전소 철근콘크리트 보의 지진 취약도 해석)

  • Lee, Myung-Kue;Kim, Moon-Soo;Chung, Yun-Suk;Kim, In-Soo;Koh, Sung-Ki
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2005.05a
    • /
    • pp.235-238
    • /
    • 2005
  • The seismic fragility analyses of reinforced concrete propelled beam are performed to evaluate safety margin. The models were simulated by Latin Hyper-Cube (LHC) method considering various aging-related deterioration of RC beam. Fragility curves under various condition subjected to static load are compared. It is found that the 20$\%$ loss of top and bottom steel 15$\%$ lower than the undegraded beam in the ultimate strength. Seismic fragility analyses were performed to find out the effect of aging-related deterioration on the dynamic behaviour of RC beam.

  • PDF

Analysis of layered bases-foundations models under seismic actions

  • Aghalovyan, L.A.;Sahakyan, A.V.;Aghalovyan, M.L.
    • Smart Structures and Systems
    • /
    • v.2 no.4
    • /
    • pp.295-304
    • /
    • 2006
  • The paper considers the dynamic behaviour of the two-layered and multi-layered plate packets under dynamic (seismic) loading. These models correspond to the base-foundation packet structures. The analysis of the various models, including the models of contact between the layers, is derived on the base of the precise solutions of elasticity theory equations. It is shown that the application of the seismoisolator or, in general, less rigid materials between the base and the foundation brings to reduction of the natural frequencies of free vibrations of the packet base-foundation, as well as to the significant reduction of the negative seismic effect on the structures.

Evaluation of energy response of space steel frames subjected to seismic loads

  • Ozakgul, Kadir
    • Structural Engineering and Mechanics
    • /
    • v.54 no.4
    • /
    • pp.809-827
    • /
    • 2015
  • In this paper, seismic energy response of inelastic steel structures under earthquake excitations is investigated. For this purpose, a numerical procedure based on nonlinear dynamic analysis is developed by considering material, geometric and connection nonlinearities. Material nonlinearity is modeled by the inversion of Ramberg-Osgood equation. Nonlinearity caused by the interaction between the axial force and bending moment is also defined considering stability functions, while the geometric nonlinearity caused by axial forces is described using geometric stiffness matrix. Cyclic behaviour of steel connections is taken into account by employing independent hardening model. Dynamic equation of motion is solved by Newmark's constant acceleration method in the time history domain. Energy response analysis of space frames is performed by using this proposed numerical method. Finally, for the first time, the distribution of the different energy types versus time at the duration of the earthquake ground motion is obtained where in addition error analysis for the numerical solutions is carried out and plotted depending on the relative error calculated as a function of energy balance versus time.

Behaviour of RC beam-column joint with varying location of construction joints in the column

  • Vanlalruata, Jonathan;Marthong, Comingstarful
    • Earthquakes and Structures
    • /
    • v.20 no.1
    • /
    • pp.29-38
    • /
    • 2021
  • According to ACI 224.3R-95 (ACI, 2013), construction joints (cold joint) in the column are to be provided at the top of floor slab for column continuing to the next floor and underside of floor slab and beam. A recent study reveals that providing cold joint of the mentioned location significantly reduced the seismic performance of the frame structures. Since, the construction joints in multi-story frame structures normally provided at the top of the floor slabs and at soffit of the beam in the column. This study investigated the effect of construction joint at various location in the column of beam-column joint such as at the top of floor slab, soffit level of the beam, half the depth of beam below the soffit of the beam and at a full depth of the beam below the soffit of the beam. The study revealed that there is an improvement in seismic capacity of the specimens as the location of cold joint is placed away from the soffit of the beam for lower story column.