• Title/Summary/Keyword: Seismic Safety

Search Result 1,007, Processing Time 0.024 seconds

Performance Evaluation of Seismic Stopper using Structural Analysis and AC156 Test Method

  • Ryu, Hyun-su
    • Journal of the Korean Society of Marine Environment & Safety
    • /
    • v.26 no.3
    • /
    • pp.277-285
    • /
    • 2020
  • Recently, studies have been actively conducted on seismic design and improvement of the seismic performance of bridges, buildings, factories, and plants. In particular, heavy items that are being manufactured or waiting to be shipped from factories (such as generators, engines, and boilers) must be equipped with seismic stoppers to prevent them from moving or falling during an earthquake. Seismic stoppers should be suitably determined by the size and weight of these heavy items; however, they have no general design standard. In this study, structural analyses and seismic tests were conducted to evaluate the performance of newly designed seismic stoppers. Structural analysis was performed on three stopper models to estimate the external load at which the yield stress of the material was not exceeded. Based on the analysis results, a seismic test of the stopper was carried out in accordance with the AC156 test method. Finally, product specifications for all three seismic stopper models were determined and their static/dynamic load performance was evaluated.

CURRENT STATUS AND IMPORTANT ISSUES ON SEISMIC HAZARD EVALUATION METHODOLOGY IN JAPAN

  • Ebisawa, Katsumi
    • Nuclear Engineering and Technology
    • /
    • v.41 no.10
    • /
    • pp.1223-1234
    • /
    • 2009
  • The outlines of seismic PSA implementation standards and seismic hazard evaluation procedure were shown. An overview of the cause investigation of seismic motion amplification on the Niigata-ken Chuetsu-oki (NCO) earthquake was also shown. Then, the contents for improving the seismic hazard evaluation methodology based on the lessons learned from the NCO earthquake were described. (1) It is very important to recognize the effectiveness of a fault model on the detail seismic hazard evaluation for the near seismic source through the cause investigation of the NCO earthquake. (2) In order to perform and proceed with a seismic hazard evaluation, the Japan Nuclear Energy Safety Organization has proposed the framework of the open deliberation rule regarding the treatment of uncertainty which was made so as to be able to utilize a logic tree. (3) The b-value evaluation on the "Stress concentrating zone," which is a high seismic activity around the NCO hypocenter area, should be modified based on the Gutenberg-Richter equation.

Methodology of seismic-response-correlation-coefficient calculation for seismic probabilistic safety assessment of multi-unit nuclear power plants

  • Eem, Seunghyun;Choi, In-Kil;Yang, Beomjoo;Kwag, Shinyoung
    • Nuclear Engineering and Technology
    • /
    • v.53 no.3
    • /
    • pp.967-973
    • /
    • 2021
  • In 2011, an earthquake and subsequent tsunami hit the Fukushima Daiichi Nuclear Power Plant, causing simultaneous accidents in several reactors. This accident shows us that if there are several reactors on site, the seismic risk to multiple units is important to consider, in addition to that to single units in isolation. When a seismic event occurs, a seismic-failure correlation exists between the nuclear power plant's structures, systems, and components (SSCs) due to their seismic-response and seismic-capacity correlations. Therefore, it is necessary to evaluate the multi-unit seismic risk by considering the SSCs' seismic-failure-correlation effect. In this study, a methodology is proposed to obtain the seismic-response-correlation coefficient between SSCs to calculate the risk to multi-unit facilities. This coefficient is calculated from a probabilistic multi-unit seismic-response analysis. The seismic-response and seismic-failure-correlation coefficients of the emergency diesel generators installed within the units are successfully derived via the proposed method. In addition, the distribution of the seismic-response-correlation coefficient was observed as a function of the distance between SSCs of various dynamic characteristics. It is demonstrated that the proposed methodology can reasonably derive the seismic-response-correlation coefficient between SSCs, which is the input data for multi-unit seismic probabilistic safety assessment.

Simplified elastic-plastic analysis procedure for strain-based fatigue assessment of nuclear safety class 1 components under severe seismic loads

  • Kim, Jong-Sung;Kim, Jun-Young
    • Nuclear Engineering and Technology
    • /
    • v.52 no.12
    • /
    • pp.2918-2927
    • /
    • 2020
  • This paper proposes a simplified elastic-plastic analysis procedure using the penalty factors presented in the Code Case N-779 for strain-based fatigue assessment of nuclear safety class 1 components under severe seismic loads such as safety shutdown earthquake and beyond design-basis earthquake. First, a simplified elastic-plastic analysis procedure for strain-based fatigue assessment of nuclear safety class 1 components under the severe seismic loads was proposed based on the analysis result for the simplified elastic-plastic analysis procedure in the Code Case N-779 and the stress categories corresponding to normal operation and seismic loads. Second, total strain amplitude was calculated directly by performing finite element cyclic elastic-plastic seismic analysis for a hot leg nozzle in pressurizer surge line subject to combined loading including deadweight, pressure, seismic inertia load, and seismic anchor motion, as well as was derived indirectly by applying the proposed analysis procedure to the finite element elastic stress analysis result for each load. Third, strain-based fatigue assessment was implemented by applying the strain-based fatigue acceptance criteria in the ASME B&PV Code, Sec. III, Subsec. NB, Article NB-3200 and by using the total strain amplitude values calculated. Last, the total strain amplitude and the fatigue assessment result corresponding to the simplified elastic-plastic analysis were compared with those using the finite element elastic-plastic seismic analysis results. As a result of the comparison, it was identified that the proposed analysis procedure can derive reasonable and conservative results.

Seismic Fragility Evaluation of Isolated NPP Containment Structure Considering Soil-Structure Interaction Effect (지반-구조물 상호작용 효과를 고려한 지진격리시스템이 적용된 원전 격납건물의 지진 취약도 평가)

  • Eem, Seung Hyun;Jung, Hyung Jo;Kim, Min Kyu;Choi, In Kil
    • Journal of the Earthquake Engineering Society of Korea
    • /
    • v.17 no.2
    • /
    • pp.53-59
    • /
    • 2013
  • Several researches have been studied to enhance the seismic performance of nuclear power plants (NPPs) by application of seismic isolation. If a seismic base isolation system is applied to NPPs, seismic performance of nuclear power plants should be reevaluated considering the soil-structure interaction effect. The seismic fragility analysis method has been used as a quantitative seismic safety evaluation method for the NPP structures and equipment. In this study, the seismic performance of an isolated NPP is evaluated by seismic fragility curves considering the soil-structure interaction effect. The designed seismic isolation is introduced to a containment building of Shin-Kori NPP which is KSNP (Korean Standard Nuclear Power Plant), to improve its seismic performance. The seismic analysis is performed considering the soil-structure interaction effect by using the linearized model of seismic isolation with SASSI (System for Analysis of Soil-Structure Interaction) program. Finally, the seismic fragility is evaluated based on soil-isolation-structure interaction analysis results.

Slope Stability Analysis Using Modified Seismic Intensity Method During Earthquake (수정진도법에 의한 지진시의 사면안정해석에 관하여)

  • 오병현
    • Proceedings of the Earthquake Engineering Society of Korea Conference
    • /
    • 2000.10a
    • /
    • pp.124-131
    • /
    • 2000
  • Numerical analysis of slop stability is carried out using seismic intensity, modified seismic intensity, and response seismic coefficient methods. It is found by comparing each of method that minimum safety factor precedes the required safety factor. It is also proved during analysis that most conservative method is the earthquake response analysis method, next is the response seismic coefficient method, and last one is the seismic intensity method. Usually, seismic intensity method is applied in analysis of slop stability. However, in view of safety factor, modified seismic intensity method is more conservative than seismic intensity method. Also modified seismic intensity method is appropriate when height of structure analyzed is high enough.

  • PDF

A Study of System Analysis Method for Seismic PSA of Nuclear Power Plants (원자력발전소 지진 PSA의 계통분석방법 개선 연구)

  • Lim, Hak Kyu
    • Journal of the Korean Society of Safety
    • /
    • v.34 no.5
    • /
    • pp.159-166
    • /
    • 2019
  • The seismic PSA is to probabilistically estimate the potential damage that a large earthquake will cause to a nuclear power plant. It integrates the probabilistic seismic hazard analysis, seismic fragility analysis, and system analysis and is utilized to identify seismic vulnerability and improve seismic capacity of nuclear power plants. Recently, the seismic risk of domestic multi-unit nuclear power plant sites has been evaluated after the Great East Japan Earthquake and Gyeongju Earthquake in Korea. However, while the currently available methods for system analysis can derive basic required results of seismic PSA, they do not provide the detailed results required for the efficient improvement of seismic capacity. Therefore, for in-depth seismic risk evaluation, improved system analysis method for seismic PSA has become necessary. This study develops a system analysis method that is not only suitable for multi-unit seismic PSA but also provides risk information for the seismic capacity improvements. It will also contribute to the enhancement of the safety of nuclear power plants by identifying the seismic vulnerability using the detailed results of seismic PSA. In addition, this system analysis method can be applied to other external event PSAs, such as fire PSA and tsunami PSA, which require similar analysis.

Seismic Response Analysis of the Center-Core Rockfill Dam (중심코아령사력댐의 지진응답해석)

  • 오병현;임정열;이종옥
    • Proceedings of the Earthquake Engineering Society of Korea Conference
    • /
    • 2001.09a
    • /
    • pp.139-146
    • /
    • 2001
  • The seismic safety analysis were performed for the center-core rockfill dam(CCRD) The static and pseudo-static FEM analysis using seismic coefficient Method, and dynamic FEM analysis using Hachinohe earthquake wave(0.12g) were used for the seismic safety of CCRD. The results of seismic analysis were that the factor of safety of down slope was 1.5, horizontal displacement is about 14.3cm, and vertical displacement is 3.3cm at dam creast. The model dam did not show any seismic stability problems for 0.12g. And much more research is still necessary in seismic safety of CCRD.

  • PDF

Evaluation of Seismic Margin of Existing Steel Structure Based on Seismic Margin Assessment (내진여유도평가법에 근거한 기존 강구조물의 내진성능평가)

  • 황규호;송정국;강선구;서용표
    • Proceedings of the Earthquake Engineering Society of Korea Conference
    • /
    • 2002.03a
    • /
    • pp.239-249
    • /
    • 2002
  • The Turbine Building of nuclear power plant is classified as non safety-related structure. During the operation, there may be possibility the original licensing basis would be changed, which makes non safety-related structure safety-related. Such a change in regulation requires utility to perform seismic qualification for the existing structure and their facilities. Thus it is meaningful to evaluate seismic margin of the existing non-qualified building structure. In addition, in this paper it is shown that a modification to the structure can enhance their seismic capacity.

  • PDF