• Title/Summary/Keyword: Seismic Response Coefficient

Search Result 131, Processing Time 0.021 seconds

Methodology of seismic-response-correlation-coefficient calculation for seismic probabilistic safety assessment of multi-unit nuclear power plants

  • Eem, Seunghyun;Choi, In-Kil;Yang, Beomjoo;Kwag, Shinyoung
    • Nuclear Engineering and Technology
    • /
    • v.53 no.3
    • /
    • pp.967-973
    • /
    • 2021
  • In 2011, an earthquake and subsequent tsunami hit the Fukushima Daiichi Nuclear Power Plant, causing simultaneous accidents in several reactors. This accident shows us that if there are several reactors on site, the seismic risk to multiple units is important to consider, in addition to that to single units in isolation. When a seismic event occurs, a seismic-failure correlation exists between the nuclear power plant's structures, systems, and components (SSCs) due to their seismic-response and seismic-capacity correlations. Therefore, it is necessary to evaluate the multi-unit seismic risk by considering the SSCs' seismic-failure-correlation effect. In this study, a methodology is proposed to obtain the seismic-response-correlation coefficient between SSCs to calculate the risk to multi-unit facilities. This coefficient is calculated from a probabilistic multi-unit seismic-response analysis. The seismic-response and seismic-failure-correlation coefficients of the emergency diesel generators installed within the units are successfully derived via the proposed method. In addition, the distribution of the seismic-response-correlation coefficient was observed as a function of the distance between SSCs of various dynamic characteristics. It is demonstrated that the proposed methodology can reasonably derive the seismic-response-correlation coefficient between SSCs, which is the input data for multi-unit seismic probabilistic safety assessment.

Numerical Analysis for Buried Box Structures during Earthquake (지중 박스구조물의 지진시 거동 해석)

  • 박성진
    • Proceedings of the Earthquake Engineering Society of Korea Conference
    • /
    • 2000.10a
    • /
    • pp.108-115
    • /
    • 2000
  • Numerical analysis of slop stability is presented using seismic displacement, response seismic coefficient, and earthquake response analysis methods. In seismic displacement and response seismic coefficient methods, horizontal static seismic force is considered as 0.2g while vertical static seismic force is not considered in analysis. For earthquake response analysis Hahinoha-wave is applied, It is found from result that analysis using response seismic coefficient method is much more conservative than that using seismic displacement method Also, analysis result using earthquake response analysis method is somewhat less conservative about 25% when compared with that using seismic displacement method.

  • PDF

Development of the Modified Seismic Coefficient Method to Establish Seismic Design Criteria of Buried Box Structures. (BOX 형 지하구조물의 내진설계 기준 확립을 위한 해석기법개발)

  • 박성우
    • Proceedings of the Earthquake Engineering Society of Korea Conference
    • /
    • 2000.04a
    • /
    • pp.194-201
    • /
    • 2000
  • In this study the modified seismic coefficient method for seismic analysis of buried box structures is developed for practical purpose. The loading coefficient in the modified seismic coefficient method is determined from the results of the response displacement analysis. In the developed method adequate velocity response spectrum in accordance with soil condition is also needed to seismic design of buried box structures, In order to investigate applicability of the modified seismic coefficient method various analyses are performed with different parameters such as depth of base rock height and width of box buried depth and value of standard penetration test. Results from the modified seismic coefficient method are compared with those of the response displacement method in terms of the maximum bending moment and the location of it. From the comparison it is shown that the feasibility of the modified seismic coefficient method for seismic analysis of buried box structures.

  • PDF

Analysis of Seismic Response Coefficient by Fundamental Period using Geographic Information System (GIS를 이용한 고유주기에 따른 지진응답계수 분석)

  • Seo, Eun-Su;Choi, Se-Hyu
    • Spatial Information Research
    • /
    • v.20 no.1
    • /
    • pp.39-45
    • /
    • 2012
  • Response of buildings under seismic load is different according to fundamental period. It is provided in Korean Building Code(KBC2009) seismic response coefficient by fundamental period for seismic design of buildings. Recently, many researchers have studied on fundamental period and seismic response coefficient. However, studies on seismic design using Geographic Information System(GIS) are not sufficient. Therefore, this paper has analyzed on seismic response coefficient of buildings using ArcGIS. This paper can be evaluated efficiently for seismic analysis of structures. And this study will be used as basics of a reasonable seismic design using Geographic Information Systems(GIS).

Slope Stability Analysis Using Modified Seismic Intensity Method During Earthquake (수정진도법에 의한 지진시의 사면안정해석에 관하여)

  • 오병현
    • Proceedings of the Earthquake Engineering Society of Korea Conference
    • /
    • 2000.10a
    • /
    • pp.124-131
    • /
    • 2000
  • Numerical analysis of slop stability is carried out using seismic intensity, modified seismic intensity, and response seismic coefficient methods. It is found by comparing each of method that minimum safety factor precedes the required safety factor. It is also proved during analysis that most conservative method is the earthquake response analysis method, next is the response seismic coefficient method, and last one is the seismic intensity method. Usually, seismic intensity method is applied in analysis of slop stability. However, in view of safety factor, modified seismic intensity method is more conservative than seismic intensity method. Also modified seismic intensity method is appropriate when height of structure analyzed is high enough.

  • PDF

Development of Probabilistic Site Coefficient (확률론적 지진계수 개발)

  • Kwak, Dong-Yeop;Jeong, Chang-Gyun;Park, Du-Hee
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2009.03a
    • /
    • pp.707-714
    • /
    • 2009
  • The design response spectrum generally used in Korea is decided by the site coefficients determined by deterministic methodology, while it is based on probabilistic seismic hazard analysis. The design response spectrum has to be made using probabilistic method which includes uncertainties of ground motions and ground properties for coincide with probabilistic methodology of seismic hazard analysis. In this study probabilistic site coefficients were developed, which were defined by the results of site response analysis using a set of ground motion that was compatible with present seismic hazard map. The design response spectrum defined by probabilistic seismic coefficients resulted in lower spectrum in long period area and larger spectrum in short period area. Also, the maximum spectral accelerations in site class D and site class E were lower than one in site class C while in the previous design response spectrum the maximum spectral acceleration increased from site class A to E.

  • PDF

Compare Seismic Coefficient Method and Seismic Response Analysis for Slope during Earthquake (지진시 사면안정해석에 있어서의 진도법과 지진응답해석의 결과 비교)

  • 박성진;오병현;박춘식;황성춘
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2000.11a
    • /
    • pp.193-200
    • /
    • 2000
  • Numerical analysis of slope stability is presented using slice method, static seismic analysis methods, and earthquake response analysis methods. Static seismic force is considered as 0.2g while vertical static seismic force is not considered in analysis. For earthquake response analysis, Hachinohe-wave is applied. Safety factor calculated using slice method for failure surface. Calculating methods are Bishop's method and Janhu's method. Static seismic analysis was applied using Mhor-Coulomb model and earthquake response analysis was applied using non-linear elastic model.

  • PDF

Seismic response of steel reinforced concrete frame-bent plant of CAP1400 nuclear power plant considering the high-mode vibration

  • Biao Liu;Zhengzhong Wang;Bo Zhang;Ningjun Du;Mingxia Gao;Guoliang Bai
    • Steel and Composite Structures
    • /
    • v.46 no.2
    • /
    • pp.221-236
    • /
    • 2023
  • In order to study the seismic response of the main plant of steel reinforced concrete (SRC) structure of the CAP1400 nuclear power plant under the influence of different high-mode vibration, the 1/7 model structure was manufactured and its dynamic characteristics was tested. Secondly, the finite element model of SRC frame-bent structure was established, the seismic response was analyzed by mode-superposition response spectrum method. Taking the combination result of the 500 vibration modes as the standard, the error of the base reactions, inter-story drift, bending moment and shear of different modes were calculated. Then, based on the results, the influence of high-mode vibration on the seismic response of the SRC frame-bent structure of the main plant was analyzed. The results show that when the 34 vibration modes were intercepted, the mass participation coefficient of the vertical and horizontal vibration mode was above 90%, which can meet the requirements of design code. There is a large error between the seismic response calculated by the 34 and 500 vibration modes, and the error decreases as the number of modes increases. When 60 modes were selected, the error can be reduced to about 1%. The error of the maximum bottom moment of the bottom column appeared in the position of the bent column. Finally, according to the characteristics of the seismic influence coefficient αj of each mode, the mode contribution coefficient γj•Xji was defined to reflect the contribution of each mode to the seismic action.

Study on Seismic Performance Evaluation and Verification of Seismic Safety for Power Cable Tunnels (개착식 전력구의 내진성능 평가 및 내진 안전성 검증)

  • Hwang, Kyeong-min;Chun, Nak-hyun;Chung, Gil-young;Park, Kyung-sung
    • KEPCO Journal on Electric Power and Energy
    • /
    • v.6 no.4
    • /
    • pp.439-445
    • /
    • 2020
  • In this paper, the seismic performance evaluation was performed on 100 existing open-cut power cable tunnels, including ones that did not consider seismic design, in order to verify that the government's demand level (seismic special grade, 0.22 g). The results of the seismic performance evaluation show that most of the tunnels have seismic performance of 0.3 to 1 g, satisfying the level of the seismic special grade and securing the seismic safety. Meanwhile, the earthquake response analysis and structural test were performed to verify the validity of the method and the results of the seismic performance evaluation of the tunnels by the response displacement method, and to verify their seismic safety. As a result, the relative displacement due to the response displacement method under the 0.22 g earthquake was conservative than the results of the earthquake response analysis, and the results of load-displacement curves and response modification coefficient calculation by real scale structural tests showed the safety of the tunnels.

The Evaluation of Seismic Performance on the Concrete Dam of Analysis Method (해석방법에 따른 콘크리트댐의 내진성능평가)

  • 임정열;이종욱;오병현
    • Journal of the Earthquake Engineering Society of Korea
    • /
    • v.7 no.5
    • /
    • pp.1-9
    • /
    • 2003
  • The seismic design of the domestic concrete dams has done by seismic coefficient method considering inertia force, but this method has defect not reflect dynamic properties, as a conservative design method. Therefore, it is necessary for seismic design of dam to consider dynamic properties. Also, concrete dam evaluation of seismic performance has done by seismic coefficient method - in fact, it may done by dynamic analysis - that has many problems when applied to the domestic criteria. This study make a comparative analysis for result from seismic design and evaluation of seismic performance by seismic coefficient method, modified seismic coefficient method, and dynamic analysis method.