• Title/Summary/Keyword: Seismic Isolation System

Search Result 329, Processing Time 0.029 seconds

Seismic Performance Evaluation of Multi-Story Piping Systems using Triple Friction Pendulum Bearing (지진격리장치를 적용한 복층구조파이핑 시스템의 내진성능평가)

  • Ryu, Yonghee;Ju, Buseog;Son, Hoyoung
    • Journal of the Society of Disaster Information
    • /
    • v.14 no.4
    • /
    • pp.450-457
    • /
    • 2018
  • Purpose: The evaluation of seismic performance of critical structures has been emerging a key issue in Korea, since a magnitude 5.8 earthquake, the worst in Koran history, struck Gyeongju, southern area in Korea on september 12th, 2016. In particular, the catastrophic failure of nonstructural components such as sprinkler piping systems can cause significant economic loss or loss of life during and after an earthquake. The nonstructural components can be more fragile than structural components in seismic behavior. Method: This study presents the seismic performance evaluation of fire protection piping system, using coupled building-piping system installed with Triple Friction Pendulum Bearings (TPBs). Kobe (Japan), Kocaeli (Turkey), and GyeongJu (Korea) were selected to consider the uncertainty of ground motions in this study. Result: In the simulation results, it was observed that the reduction of maximum displacements of the piping system with the TPBs' system was significant: Kobe, Kocaeli, and Gyeongju cases were 49%, 14.4% and 21.5%, respectively. Conclusion: Therefore, using seismically isolated system in a building-piping system can be more effective to reduce the seismic risk than a normally installed building-piping systems without TPBs in strong earthquakes.

Multi-support excitation shaking table test of a base-isolated steel cable-stayed bridge (지진격리 강재 케이블 교량의 다지점 진동대 실험)

  • Kim, Seong-Do;Ahn, Jin-Hee;Kong, Young-Ee;Choi, Hyoung-Suk;Cheung, Jin-Hwan
    • Journal of the Earthquake Engineering Society of Korea
    • /
    • v.19 no.4
    • /
    • pp.161-171
    • /
    • 2015
  • A series of tests was conducted for full-scale single-pylon asymmetric cable-stayed bridges using a system of multiple shaking tables. The 2-span bridge length was 28 m, and the pylon height was 10.2 m. 4 different base conditions were considered: the fixed condition, RB (rubber bearings), LRB (lead rubber bearings), and HDRB (high damping rubber bearings). Based on investigation of the seismic response, the accelerations and displacements in the axial direction of the isolated bridge were increased compared to non-isolated case. However, the strain of the pylon was decreased, because the major mode of the structure was changed to translation for the axial direction due to the dynamic mass. The response of the cable bridge could differ from the desired response according to the locations and characteristics of the seismic isolator. Therefore, caution is required in the design and prediction in regard to the location and behavior of the seismic isolator.

Behaviour of asymmetric building with double variable frequency pendulum isolator

  • Soni, D.P.;Mistry, B.B.;Panchal, V.R.
    • Structural Engineering and Mechanics
    • /
    • v.34 no.1
    • /
    • pp.61-84
    • /
    • 2010
  • Presented in this paper is the behaviour of asymmetric building isolated by the double variable frequency pendulum isolator (DVFPI). The DVFPI is an adoption of single variable frequency pendulum isolator (VFPI). The geometry and coefficient of friction of top and bottom sliding surfaces can be unequal. The governing equations of motion of the building-isolation system are derived and solved in incremental form. The analysis duly considers the interaction of frictional forces in the two principal directions developed at each sliding surface of the DVFPI. In order to investigate the behaviour of the base isolation using the DVFPI, the coupled lateral-torsional response is obtained under different parametric variations for a set of six far-fault earthquake ground motions and criterion to optimize its performance is proposed. Further, influences of the initial time period, coefficient of friction and frequency variation factors at the two sliding surfaces are investigated. The numerical results of the extensive parametric study help in understanding the torsional behaviour of the structure isolated with the double sliding surfaces as in the DVFPI. It is found that the performance of the DVFPI can be optimized by designing the top sliding surface initially softer and smoother relative to the bottom one.

Base Isolation Performance of Friction Pendulum System using Magnetic Force (자력을 이용한 마찰진자 베어링의 면진성능)

  • Hwang, In-Ho;Shin, Ho-Jae;Lee, Jong-Seh
    • Journal of the Earthquake Engineering Society of Korea
    • /
    • v.12 no.4
    • /
    • pp.55-61
    • /
    • 2008
  • One of the most recent base-isolation systems to improve the earthquake resistance of structures is the Friction Pendulum System(FPS). Simple in design but with versatile properties, the FPS has been used in some of the world s largest seismically isolated buildings, bridges and chemical tanks. FPS using PTFE(Polytetrafl-uoroethylene) based material has been developed to provide a simple and effective way for structures to achieve earthquake resistance. PTFE materials are soft, and are apt to become deformed easily after a few working cycles. In this study, magnetic force is used rather than the usual PTFE materials to improve the material shortcomings. A MF-FPS(Magnetic force-Friction Pendulum System) is proposed, and us shown to effectively protect structures against earthquakes. To demonstrate the advantages of this new system, the MF-FPS is compared with FPS as an attempt to prove its performance. A six-degree-of-freedom model is considered as a numerical example. The ground acceleration data of El Centro, Mexico and Gebze earthquakes are used as seismic excitations. The results showed that MF-FPS improved performance compared with FPS.

Fuzzy control of hybrid base-isolator with magnetorheological damper and friction pendulum system (MR 감쇠기와 FPS를 이용한 하이브리드 면진장치의 퍼지제어)

  • Kim, Hyun-Su;Roschke, P.N.;Lin, P.Y.
    • Journal of the Earthquake Engineering Society of Korea
    • /
    • v.9 no.1 s.41
    • /
    • pp.61-70
    • /
    • 2005
  • Shaking table tests are carried out on a single-degree-of-freedom mass that is equipped with a hybrid base isolation system. The isolator consists of a set of four specially-designed friction pendulum systems (FPS) and a magnetorheological (MR) damper. The structure and its hybrid isolation system are subjected to various intensities of near- and far-fault earthquakes on a large shake table. The proposed fuzzy controller uses feedback from displacement or acceleration transducers attached to the structure to modulate resistance of the semi-active damper to motion. Results from several types of passive and semi-active control strategies are summarized and compared. The study shows that a combination of FPS isolators and an adjustable MR damper can effectively provide robust control of vibration for a large full-scale structure undergoing a wide variety of seismic loads.

Characterization and shaking table tests of multiple trench friction pendulum system with numerous intermediate sliding plates

  • Tsai, C.S.;Lin, Yung-Chang
    • Structural Engineering and Mechanics
    • /
    • v.40 no.2
    • /
    • pp.167-190
    • /
    • 2011
  • In order to upgrade the seismic resistibility of structures and enhance the functionality of an isolator, a new base isolator called the multiple trench friction pendulum system (MTFPS) is proposed in this study. The proposed MTFPS isolator is composed of a trench concave surface and several intermediate sliding plates in two orthogonal directions. Mathematical formulations have been derived to examine the characteristics of the proposed MTFPS isolator possessing numerous intermediate sliding plates. By means of mathematical formulations which have been validated by experimental results of bidirectional ground shaking, it can be inferred that the natural period and damping effect of the MTFPS isolator with several intermediate sliding plates can be altered continually and controllably during earthquakes. Furthermore, results obtained from the component and shaking table tests demonstrate that the proposed isolator provides good protection to structures for prevention of damage from strong earthquakes.

Application of Hybrid Structural System Using Coupled Vibration Control Structure and Seismic Isolated Structure in High-Rise Building

  • Nakajima, Shunsuke
    • International Journal of High-Rise Buildings
    • /
    • v.10 no.3
    • /
    • pp.219-227
    • /
    • 2021
  • This building is a forty-eight story, 170 meters high multiple dwelling house with Dual Frame System (DFS), a coupled vibration system connecting two independent structures with hydraulic dampers. Generation of large deformation between two structures during earthquakes contributes to make the hydraulic dampers effective. To improve the aseismic performance more, this building adopts DFS hybrid system that consists of DFS and base isolation system. About typical floors, columns and beams are constructed with LRV precast concrete method that shorten the construction period greatly by integrating column-beam joints in column members.

SSI effects on seismic behavior of smart base-isolated structures

  • Shourestani, Saeed;Soltani, Fazlollah;Ghasemi, Mojtaba;Etedali, Sadegh
    • Geomechanics and Engineering
    • /
    • v.14 no.2
    • /
    • pp.161-174
    • /
    • 2018
  • The present study investigates the soil-structure interaction (SSI) effects on the seismic performance of smart base-isolated structures. The adopted control algorithm for tuning the control force plays a key role in successful implementation of such structures; however, in most studied carried out in the literature, these algorithms are designed without considering the SSI effect. Considering the SSI effects, a linear quadratic regulator (LQR) controller is employed to seismic control of a smart base-isolated structure. A particle swarm optimization (PSO) algorithm is used to tune the gain matrix of the controller in both cases without and with SSI effects. In order to conduct a parametric study, three types of soil, three well-known earthquakes and a vast range of period of the superstructure are considered for assessment the SSI effects on seismic control process of the smart-base isolated structure. The adopted controller is able to make a significant reduction in base displacement. However, any attempt to decrease the maximum base displacement results in slight increasing in superstructure accelerations. The maximum and RMS base displacements of the smart base-isolated structures in the case of considering SSI effects are more than the corresponding responses in the case of ignoring SSI effects. Overall, it is also observed that the maximum and RMS base displacements of the structure are increased by increasing the natural period of the superstructure. Furthermore, it can be concluded that the maximum and RMS superstructure accelerations are significant influenced by the frequency content of earthquake excitations and the natural frequency of the superstructure. The results show that the design of the controller is very influenced by the SSI effects. In addition, the simulation results demonstrate that the ignoring the SSI effect provides an unfavorable control system, which may lead to decline in the seismic performance of the smart-base isolated structure including the SSI effects.

Performance enhancement of base-isolated structures on soft foundation based on smart material-inerter synergism

  • Feng Wang;Liyuan Cao;Chunxiang Li
    • Earthquakes and Structures
    • /
    • v.27 no.1
    • /
    • pp.1-15
    • /
    • 2024
  • In order to enhance the seismic performance of base-isolated structures on soft foundations, the hybrid system of base-isolated system (BIS) and shape memory alloy inerter (SMAI), referred to as BIS+SMAI, is for the first time here proposed. Considering the nonlinear hysteretic relationships of both the isolation layer and SMA, and soil-structure interaction (SSI), the equivalent linearized state space equation is established of the structure-BIS+SMAI system. The displacement variance based on the H2 norm is then formulated for the structure with BIS+SMAI. Employing the particle swarm optimization, the optimization design methodology of BIS+SMAI is presented in the frequency domain. The evolvement rules of BIS+SMAI in the effectiveness, robustness, SMA driving force, inertia force, stroke, and damping enhancement effect are revealed in the frequency domain through changing the inerter-mass ratio, structural height, aspect ratio, and relative stiffness ratio between the soil and structure. Meanwhile, the validation of BIS+SMAI is conducted using real earthquake records. Results demonstrate that BIS+SMAI can effectively reduce the isolation layer displacement. The inerter can significantly increase the hysteretic displacement of SMA and thus enhance its energy dissipation capacity, implying that BIS+SMAI has better effectiveness than BIS+SMA. Although BIS+SMAI and BIS+ tuned inerter damper (TID) have practically the same effectiveness, BIS+SMAI has the lower optimum damping, significantly smaller inertia force, and higher robustness to perturbations of the optimum parameters. Therefore, BIS+SMAI can be used as a more engineering realizable hybrid system for enhancing the performance of base-isolated structures in soft soil areas.

Nonlinear response of r.c. framed buildings retrofitted by different base-isolation systems under horizontal and vertical components of near-fault earthquakes

  • Mazza, Fabio;Mazza, Mirko;Vulcano, Alfonso
    • Earthquakes and Structures
    • /
    • v.12 no.1
    • /
    • pp.135-144
    • /
    • 2017
  • Near-fault ground motions are characterized by high values of the ratio between the peak of vertical and horizontal ground accelerations, which can significantly affect the nonlinear response of a base-isolated structure. To check the effectiveness of different base-isolation systems for retrofitting a r.c. framed structure located in a near-fault area, a numerical investigation is carried out analyzing the nonlinear dynamic response of the fixed-base and isolated structures. For this purpose, a six-storey r.c. framed building is supposed to be retrofitted by insertion of an isolation system at the base for attaining performance levels imposed by current Italian code in a high-risk seismic zone. In particular, elastomeric (e.g., high-damping-laminated-rubber bearings, HDLRBs) and friction (e.g., steel-PTFE sliding bearings, SBs, or friction pendulum bearings, FPBs) isolators are considered, with reference to three cases of base isolation: HDLRBs acting alone (i.e., EBI structures); in-parallel combination of HDLRBs and SBs (i.e., EFBI structures); FPBs acting alone (i.e., FPBI structures). Different values of the stiffness ratio, defined as the ratio between the vertical and horizontal stiffnesses of the HDLRBs, sliding ratio, defined as the global sliding force divided by the maximum sliding force of the SBs, and in-plan distribution of friction coefficient for the FPs are investigated. The EBI, EFBI and FPBI base-isolation systems are designed assuming the same values of the fundamental vibration period and equivalent viscous damping ratio. The nonlinear dynamic analysis is carried out with reference to near-fault earthquakes, selected and scaled on the design hypotheses adopted for the test structures.