• Title/Summary/Keyword: Seismic Energy

Search Result 1,533, Processing Time 0.021 seconds

Study on the Dissolution of Sandstones in Gyeongsang Basin and the Calculation of Their Dissolution Coefficients under CO2 Injection Condition (이산화탄소 지중 주입에 의한 경상분지 사암의 용해반응 규명 및 용해 반응상수값 계산)

  • Kang, Hyunmin;Baek, Kyoungbae;Wang, Sookyun;Park, Jinyoung;Lee, Minhee
    • Economic and Environmental Geology
    • /
    • v.45 no.6
    • /
    • pp.661-672
    • /
    • 2012
  • Lab scale experiments to investigate the dissolution reaction among supercritical $CO_2$-sandstone-groundwater by using sandstones from Gyeongsang basin were performed. High pressurized cell system (100 bar and $50^{\circ}C$) was designed to create supercritical $CO_2$ in the cell, simulating the sub-surface $CO_2$ storage site. The first-order dissolution coefficient ($k_d$) of the sandstone was calculated by measuring the change of the weight of thin section or the concentration of ions dissolved in groundwater at the reaction time intervals. For 30 days of the supercritical $CO_2$-sandstone-groundwater reaction, physical properties of sandstone cores in Gyeongsang basin were measured to investigate the effect of supercritical $CO_2$ on the sandstone. The weight change of sandstone cores was also measured to calculate the dissolution coefficient and the dissolution time of 1 g per unit area (1 $cm^2$) of each sandstone was quantitatively predicted. For the experiment using thin sections, mass of $Ca^{2+}$ and $Na^+$ dissolved in groundwater increased, suggesting that plagioclase and calcite of the sandstone would be significantly dissolved when it contacts with supercritical $CO_2$ and groundwater at $CO_2$ sequestration sites. 0.66% of the original thin sec-tion mass for the sandstone were dissolved after 30 days reaction. The average porosity for C sandstones was 8.183% and it increased to 8.789% after 30 days of the reaction. The average dry density, seismic velocity, and 1-D compression strength of sandstones decreased and these results were dependent on the porosity increase by the dissolution during the reaction. By using the first-order dissolution coefficient, the average time to dissolve 1 g of B and C sandstones per unit area (1 $cm^2$) was calculated as 1,532 years and 329 years, respectively. From results, it was investigated that the physical property change of sandstones at Gyeongsang basin would rapidly occur when the supercritical $CO_2$ was injected into $CO_2$ sequestration sites.

Aeromagnetic Interpretation of the Southern and Western Offshore Korea (한국 서남근해에 대한 항공자력탐사 해석)

  • Baag Czango;Baag Chang-Eob
    • The Korean Journal of Petroleum Geology
    • /
    • v.2 no.2 s.3
    • /
    • pp.51-57
    • /
    • 1994
  • Analysis of the aeromagnetic data aquired by US Navy in the year 1969 permits us to predict a new sedimentary basin, Heugsan Basin, south of the known Gunsan Basin in Block Ⅱ. The basin appears to consist of three sub-basins trending NNW-SSE. The results of our analysis provide not only an independent assessment of the Gunsan Basin, but also new important information on the tectonic origin and mechanism for the two basins as well as for the entire region. The basin forming tectonic style is interpreted as rhombochasm associated with double overstepped left-lateral wrench faults. From the magnetic evidence, a few NE-SW trending major onshore faults are extended to the study area. We also interpreted the nature of the faults to be left-lateral wrenches. This new gross structural style is consistent with the results of recent Yeongdong Basin analysis by Lee. The senses of fault movement are also supported by the paleomagnetic evidence that the Philippine Sea had experienced an 80-degree clockwise rotation since the Eocene. Based on a 2 $\frac{1}{2}$ model study the probable maximum thickness of the sediments in the Gunsan Basin is approximately 7500 meters. We believe that the new Heugsan Basin was left unidentified because a high velocity layer may be overlying the basin. Because the overall structural configuration of the Heugsan Basin appears to be favorable for hydrocarbon accumulation, a detailed airborne magnetic survey is recommended in the area in order to verify the magnetic expression of this thick basin. A detailed subsequent marine gravity survey is also recommended in order to delineate the sedimentary section and to acquire supplemental data to the magnetic method only if an overlying high velocity layer is confirmed. Otherwise a high energy source seismic survey may be more effective.

  • PDF

Seismic Wave Velocity Characteristics of the Mudeungsan Tuff under the Influence of Freeze-Thaw (동결-융해에 따른 무등산 응회암의 탄성파 속도 특성)

  • Seong-Seung Kang;Jeongdu Noh
    • The Journal of Engineering Geology
    • /
    • v.34 no.3
    • /
    • pp.367-379
    • /
    • 2024
  • We analyzed the changes in the properties of the Mudeungsan tuff by conducting an artificial weathering experiment based on the climatic conditions of Mudeungsan National Park, to evaluate the long-term stability of the columnar jointing in the tuff. The climate of Mudeungsan National Park over 20 years suggests the temperature conditions for freeze-thaw are -20 to 30℃. The change in tuff properties due to weathering were estimated by measuring the elastic wave velocity, which was measured after every 40 freeze-thaw cycles. Based on the origin of the Mudeungsan tuff and fracture distribution in the tuff, the elastic wave velocity in samples from 24 locations was measured at regular intervals in the axial and radial directions. The axial elastic wave velocity of the Mudeungsan tuff is 5,187~5,367 m/s, and the radial elastic wave velocity is 4,001~5,290 m/s. As a result of 200 freeze-thaw cycles, the axial elastic wave velocity decreased by 5.53% for sample MT-1, 4.89% for MT-2, and 5.36% for MT-3. The radial elastic wave velocity decreased by 20.00% for MT-1, 17.02% for MT-2, and 19.84% for MT-3. The decrease in elastic wave velocity due to the freeze-thaw cycles is greater for low values of elastic wave velocity. For the axial elastic wave velocity, the weathering is accelerated after 120 cycles and, for the radial elastic wave velocity, weathering actively progresses from the start of the freeze-thaw cycles. In summary, for a low elastic wave velocity, experimental weathering results in a large decrease in elastic wave velocity. In addition, the Mudeungsan tuff and its columnar joints have a distinct anisotropy.