• Title/Summary/Keyword: Segregation of Silicon

Search Result 33, Processing Time 0.027 seconds

Modeling on Hydrogen Effects for Surface Segregation of Ge Atoms during Chemical Vapor Deposition of Si on Si/Ge Substrates

  • Yoo, Kee-Youn;Yoon, Hyunsik
    • Korean Chemical Engineering Research
    • /
    • v.55 no.2
    • /
    • pp.275-278
    • /
    • 2017
  • Heterogeneous semiconductor composites have been widely used to establish high-performance microelectronic or optoelectronic devices. During a deposition of silicon atoms on silicon/germanium compound surfaces, germanium (Ge) atoms are segregated from the substrate to the surface and are mixed in incoming a silicon layer. To suppress Ge segregation to obtain the interface sharpness between silicon layers and silicon/germanium composite layers, approaches have used silicon hydride gas species. The hydrogen atoms can play a role of inhibitors of silicon/germanium exchange. However, there are few kinetic models to explain the hydrogen effects. We propose using segregation probability which is affected by hydrogen atoms covering substrate surfaces. We derived the model to predict the segregation probability as well as the profile of Ge fraction through layers by using chemical reactions during silicon deposition.

Estimation of the impurity segregation in the multi-crystalline silicon ingot grown with UMG (Upgraded Metallurgical Grade) silicon (UMG(Upgraded Metallurgical Grade) 규소 이용한 다결정 잉곳의 불순물 편석 예측)

  • Jeong, Kwang-Pil;Kim, Young-Kwan
    • Journal of the Korean Crystal Growth and Crystal Technology
    • /
    • v.18 no.5
    • /
    • pp.195-199
    • /
    • 2008
  • Production of the silicon feedstock for the semiconductor industry cannot meet the requirement for the solar cell industry because the production volume is too small and production cost is too high. This situation stimulates the solar cell industry to try the lower grade silicon feedstock like UMG (Upgraded Metallurgical Grade) silicon of 5$\sim$6 N in purity. However, this material contains around 1 ppma of dopant atoms like boron or phosphorous. Calculation of the composition profile of these impurities using segregation coefficient during crystal growth makes us expect the change of the type from p to n : boron rich area in the early solidified part and phosphorous rich area in the later solidified part of the silicon ingot. It was expected that the change of the growth speed during the silicon crystal growth is effective in controlling the amount of the metal impurities but not effective in reducing the amount of dopants.

Effects of Mn on Sulfur Segregation and Magnetic Induction in Thin-gauged 3%Si-Fe Strip (극박 3%규소강에서 Mn이 황의 편석 거동 및 자성특성에 미치는 효과)

  • 조성수
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2001.07a
    • /
    • pp.917-920
    • /
    • 2001
  • Effects of addition of manganese and final reduction on segregation behavior of sulfur and final mangetic induction during final annealing have been investigated in the 300 ppm sulfur-contained 3% silicon-iron alloy strips with or without manganese. At the same concentration of sulfur, lower final reduction is favorable for final Goss texture. This is because the probability that the initial Goss grains survive under the highly segregated sulfur atmosphere and grow selectively within the segregated sulfur-free time range becomes higher. In the case of 3% silicon-iron with manganese, much lower magnetic induction was obtained, although the weak final reduction of 30% is given to the alloy, comparative to the 40%. This is because MnS particles acted as an reducer in the primary grain size.

  • PDF

Control of axial segregation by the modification of crucible geometry

  • Lee, Kyoung-Hee
    • Journal of the Korean Crystal Growth and Crystal Technology
    • /
    • v.18 no.5
    • /
    • pp.191-194
    • /
    • 2008
  • We will focus on the horizontal Bridgman growth system to analyze the transport phenomena numerically, because the simple furnace system and the confined growth environment allow for the precise understanding of the transport phenomena in solidification process. In conventional melt growth process, the dopant concentration tends to vary significantly along the crystal. In this work, we propose the modification of crucible geometry for improving the productivity of silicon single-crystal growth by controlling axial specific resistivity distribution. Numerical analysis has been performed to study the transport phenomena of dopant impurities in conventional and proposed Bridgman silicon growth using the finite element method and implicit Euler time integration. It has been demonstrated using mathematical models and by numerical analysis that proposed method is useful for obtaining crystals with superior uniformity along the growth direction at a lower cost than can be obtained by the conventional melt growth process.

The effect of carbon content on hot cracking of low carbon steel weld (저탄소성 용접금속의 응고균열에 미치는 탄소함량의 영향)

  • ;;Masumoto, I.
    • Journal of Welding and Joining
    • /
    • v.6 no.4
    • /
    • pp.16-26
    • /
    • 1988
  • The effect of carbon content on hot cracking of welded carbon steel was investigated Eight steel plates whose carbon content range from 0.02 to 0.23 percent were welded by autogeous gas tungsten are process. Constant strain was applied to the hot crack test specimen under the strain rate of 0.15 mm per second during welding. The hot cracking susceptibility ws high in the rnage of 0.02-0.05 and 0.12-0.23 percent carbon contents. The critical carbon content immune to hot cracking is in the range from 0.07 to 0.12 percent carbon. By electron probe microanalyser, amanganese segregation was not seen significantly in the whole carbon range. But segregation of silicon was higher in the region of low carbon contents. However, sulphur was segregated remarkably in the region betwen 0.18 and 0.23 percent carbon by peritectic reaction. Very smal lamount of dnedritic structure was observed in the region from 0.02 to 0.05 percent carbon by peritectic reaction. Very small amount of dendritic structure was observed in the region from 0.02 to 0.05 percent carbon but the predominant solidification structure was smooth by cellular growth. The higher the carbon content is, the more the columnar dendritic structure was observed.

  • PDF

Removal of Fe from Metallurgical Grade Si by Directional Solidification (일방향 응고에 의한 금속급 실리콘 중 Fe 제거)

  • Sakong, Seong-Dae;Son, Injoon;Sohn, Ho-Sang
    • Resources Recycling
    • /
    • v.30 no.4
    • /
    • pp.20-26
    • /
    • 2021
  • Solar grade silicon (SoG-Si) has been commercially supplied mainly from off-grade high-purity silicon manufactured for electronic-grade Si (EG-Si). Therefore, for wider application of solar cells, the development of a refining process at a considerably lower cost is required. The most cost-effective and direct approach for producing SoG-Si is to purify and upgrade metallurgical-grade Si (MG-Si). In this study, directional solidification of molten MG-Si was conducted in a high-frequency induction furnace to remove iron from molten Si. The experimental conditions and results were also discussed with respect to the effective segregation coefficient, Scheil equation, and Peclet number. The study showed that when the descent velocity of the specimen decreased, the macro segregations of impurities and ingot purities increased. These results were derived from the decrease in the effective segregation coefficient with the decrease in the rate of descent of the specimen.

Analysis and Calibration of Transient Enhanced Diffusion for Indium Impurity in Nanoscale Semiconductor Devices

  • Lee Jun-Ha;Lee Hoong-Joo
    • KIEE International Transactions on Electrophysics and Applications
    • /
    • v.5C no.1
    • /
    • pp.18-22
    • /
    • 2005
  • We developed a new systematic calibration procedure and applied it to the calibration of the diffusivity, segregation and TED model of the indium impurity. The TED of the indium impurity was studied under 4 different experimental conditions. Although the indium proved to be susceptible to the TED, the RTA was effective in suppressing the TED effect and in maintaining a steep retrograde profile. Just as in the case of boron, indium demonstrated significant oxidation-enhanced diffusion in silicon and its segregation coefficients at the Si/SiO₂ interface were significantly below 1. In contrast, the segregation coefficient of indium decreased as the temperature increased. The accuracy of the proposed technique has been validated by SIMS data and 0.13-㎛ device characteristics such as Vth and Idsat with errors less than 5% between simulation and experiment.

The Study for Transient Enhanced Diffusion of Indium and Its Application to μm Logic Devices

  • Lee Jun-Ha;Lee Hoong-Joo
    • Transactions on Electrical and Electronic Materials
    • /
    • v.5 no.6
    • /
    • pp.211-214
    • /
    • 2004
  • We developed a new systematic calibration procedure which was applied to the calibration of the diffusivity, segregation and TED model of the indium impurity. The TED of the indium impurity has been studied using 4 different groups of experimental conditions. Although the indium is susceptible to the TED, the RTA is effective to suppress the TED effect and maintain a steep retrograde profile. Like the boron, the indium shows significant oxidationenhanced diffusion in silicon and has segregation coefficients at the $Si/SiO_2$ interface much less than 1. In contrast, however, the segregation coefficient of indium decreases as the temperature increases. The accuracy of the proposed technique is validated by SIMS data and $0.13 {\mu}m$ device characteristics such as $V_{th}$ and $Id_{sat}$ with errors less than $5 \%$ between simulation and experiment.

Calibration Methodology for Transient Enhanced Diffusion of indium

  • Jun Ha, Lee;Gi Ryang, Byeon;Hyeon Chan, Jo;Gwang Seon, Kim
    • Proceedings of the Korean Society Of Semiconductor Equipment Technology
    • /
    • 2003.12a
    • /
    • pp.31-34
    • /
    • 2003
  • We developed a new systematic calibration procedure which was applied to the calibration of the diffusivity, segregation and TED model of the indium impurity. The TED of the indium impurity has been studied using 4 different groups of experimental conditions. Although the indium is susceptible to the TED, the RTA is effective to suppress the TED effect and maintain a steep retrograde profile. Like the boron, the indium shows significant oxidation-enhanced diffusion in silicon and has segregation coefficients at the $Si/SiO_2$ interface much less than 1. In contrast, however, the segregation coefficient of indium decreases as the temperature increases. The accuracy of the proposed technique is validated by SIMS data with errors less than 5% between simulation and experiment.

  • PDF