바코드 검사기의 성능에 결정적인 영향을 미치는 것은 입력 영상으로부터 바코드 영역을 추출하는 세그먼테이션 과정이며, 기존의 세그먼테이션 기법에는 여러 가지 문제점이 존재한다. 첫째, 허프 직선 변환 방법은 길이 임계값에 매우 민감하여 임계값을 정하는데 어려움이 있다. 둘째, 모폴로지 변환은 영상을 수축, 팽창하는 과정에서 많은 지연시간이 발생한다. 따라서 본 논문에서는 이러한 바코드 검증에서 지연 현상을 해결하고 주변 영향을 적게 받는 해리스 코너 검출 기법 융합형 바코드 영역 검출 기법을 제안한다. 그리고 본 논문에서 제안한 알고리즘을 검증하기 위해 실제 라인과 유사한 실험 환경을 구성하고, 다양한 크기의 바코드 영상과 다양한 위치에서의 바코드 영역 추출실험을 하였다. 결과적으로 제안 기법은 기존의 알고리즘에 비해 주변 환경이나 임계값 설정의 어려움과 영상 처리의 지연 문제를 해결하였고 모든 테스트 영상에 대해 바코드 영역을 100% 추출하는 성능을 보였다.
본 논문에서는 실제 도로에서 기울어진 촬영 각도로 인하여 회전된 차량 번호판을 정확하게 탐지하기 위하여 객체 세그먼테이션(object segmentation)을 이용하는 개선된 2-단계 차량 번호판 탐지 모델을 제안한다. 기존 연구에서 제안한 3-단계 차량 번호판 탐지 파이프라인 모델은 차량 번호판이 많이 기울어져 있을수록 탐지 정확도가 낮아지는 문제가 있다. 이를 해결하기 위해서 기존의 3-단계 모델에서 사각형 형태만으로 차량 후보 영역과 차량 번호판 후보 영역을 인식하는 전위 2개의 처리 단계 대신에 임의의 형태로 객체 탐지가 가능한 객체 세그먼테이션을 이용하는 하나의 단계로 대체함으로써 탐지 과정을 단순화하였으며 궁극적으로는 임의의 형태로 기울어진 차량 이미지에 대해서도 탐지 성능을 개선하였다. 기울어진 차량 번호판 이미지를 대상으로 실시한 차량 번호판 탐지 모델의 정확도 분석 실험 결과에 의하면 기존의 3-단계 차량 번호판 탐지 모델보다 제안된 2-단계 기법이 탐지 과정을 단순화하였음에도 최대 약 20%의 탐지 정확도를 개선할 수 있는 것으로 분석되었다.
칼라 식별에 대한 칼라 왜곡 영향을 줄이려면 각 칼라 영역에서 가능한 한 많은 화소를 통계적으로 처리하는 게 바람직하다 여기에는 영역 분할이 필요하며, 따라서 일반적으로 에지 검출이 필요하다. 그러나, 칼라 코드의 에지들은 암전류, 색 간섭, 지퍼 효과, 반사, 그늘 등의 수많은 왜곡에 의해 끊기기 때문에 흔히 영역 분할이 불완전하게 되며, 그에 대한 에지 연결 작업도 쉽지가 않다. 이 논문에서는 에지 검출로 영역 분할을 할 수 없는 영상들에 대해 k-평균 클러스터링을 수행한다. 서로 다른 카메라로 서로 다른 환경에서 촬영된 311개의 영상에 대해 실험을 수행하였다. 일차 및 이차 칼라들 중에서 랜덤하게 선택해서 각 칼라 코드 영역에 사용하였다. 두 가지 에지 검출기들에 의한 영역 분할률은 89.4%였으며, 제안된 방법은 이를 99.4%로 증가시켰다. 칼라 인식은 hue, a*, b*의 세 성분들에 기반해서 수행되었으며, 성공적 영역 분할 경우들에 대해 100%의 정확도를 보였다.
칼라코드는 획득된 영상에서 칼라의 심각한 왜곡 때문에 그 응용 확장에 어려움이 있었다. 칼라 인식에서 칼라 왜곡의 영향을 줄이기 위해서는 규칙적으로 샘플링된 몇 개의 화소들을 이용하기 보다는 가능한한 각 칼라 영역에서 많은 화소들을 통계적으로 처리하는 것이 더 바람직하다. 이를 위해서는 일반적으로 에지 검출이 필요한 분할이 필요하다. 그러나, 칼라코드에서 에지들은 분할을 불완전하게 만드는 지퍼 효과나 반사와 같은 다양한 왜곡에 의해 끊어질 수 있고, 에지 연결 또한 어려운 처리 과정이다. 본 논문에서는 칼라 인식에서 칼라 왜곡의 영향을 줄이기 위한 좀 더 효과적인 방법은 분할을 위한 정확한 에지 검출을 배제하는 방법으로 k-평균 클러스트링 알고리즘을 적용하였다. 또한, 칼라코드 검출에서 6개의 안전한 칼라와 그레이 성질 모두 이용하였다. 실험은 4M-화소 크기의 야외영상 144장에 대해 수행되었다. 제안한 방법은 테스트 영상에 대해서 100%의 칼라코드 검출율을 나타내었고, 검출된 코드에 대해서는 99% 이상의 평균 칼라 인식 정확도를 보였다. 여기서 가장 높은 정확도를 보인 캐니 에지 검출법을 사용한 경우 91.28%로 나타났다.
In this paper, a new method for lung area segmentation in chest radiographs has been presented. The movivation of this study is to include fuzzy informations about the relation between the image date structure and the area to be segmented in the segmentation process efficiently. The proposed method approached the segmentation problem in the perspective of pattern classification, using trainable pattern classifier, multi-layer perceptron. Having been trained with 10 samples, this method gives acceptable segmentation results, and also demonstrated the desirable property of giving better results as the training continues with more training samples.
대한원격탐사학회 2006년도 Proceedings of ISRS 2006 PORSEC Volume II
/
pp.643-646
/
2006
This paper addresses the approach to extract linear features from satellite imagery using an efficient segmentation method. The extraction of linear features from satellite images has been the main concern of many scientists. There is a need to develop a more capable and cost effective method for the Iranian map revision tasks. The conventional approaches for producing, maintaining, and updating GIS map are time consuming and costly process. Hence, this research is intended to investigate how to obtain linear features from SPOT satellite imagery. This was accomplished using a discontinuity-based segmentation technique that encompasses four stages: low level bottom-up, middle level bottom-up, edge thinning and accuracy assessment. The first step is geometric correction and noise removal using suitable operator. The second step includes choosing the appropriate edge detection method, finding its proper threshold and designing the built-up image. The next step is implementing edge thinning method using mathematical morphology technique. Lastly, the geometric accuracy assessment task for feature extraction as well as an assessment for the built-up result has been carried out. Overall, this approach has been applied successfully for linear feature extraction from SPOT image.
Journal of the Korean Society for Industrial and Applied Mathematics
/
제18권1호
/
pp.27-41
/
2014
In this paper, we present an efficient numerical method for multiphase image segmentation using a multiphase-field model. The method combines the vector-valued Allen-Cahn phase-field equation with initial data fitting terms containing prescribed interface width and fidelity constants. An efficient numerical solution is achieved using the recently developed hybrid operator splitting method for the vector-valued Allen-Cahn phase-field equation. We split the modified vector-valued Allen-Cahn equation into a nonlinear equation and a linear diffusion equation with a source term. The linear diffusion equation is discretized using an implicit scheme and the resulting implicit discrete system of equations is solved by a multigrid method. The nonlinear equation is solved semi-analytically using a closed-form solution. And by treating the source term of the linear diffusion equation explicitly, we solve the modified vector-valued Allen-Cahn equation in a decoupled way. By decoupling the governing equation, we can speed up the segmentation process with multiple phases. We perform some characteristic numerical experiments for multiphase image segmentation.
Chen, Yunjie;Qin, Yuhang;Jin, Zilong;Fan, Zhiyong;Cai, Mao
KSII Transactions on Internet and Information Systems (TIIS)
/
제14권3호
/
pp.962-975
/
2020
The accurate segmentation of infant brain MR image into white matter (WM), gray matter (GM), and cerebrospinal fluid (CSF) is very important for early studying of brain growing patterns and morphological changes in neurodevelopmental disorders. Because of inherent myelination and maturation process, the WM and GM of babies (between 6 and 9 months of age) exhibit similar intensity levels in both T1-weighted (T1w) and T2-weighted (T2w) MR images in the isointense phase, which makes brain tissue segmentation very difficult. We propose a deep network architecture based on U-Net, called Triple Residual Multiscale Fully Convolutional Network (TRMFCN), whose structure exists three gates of input and inserts two blocks: residual multiscale block and concatenate block. We solved some difficulties and completed the segmentation task with the model. Our model outperforms the U-Net and some cutting-edge deep networks based on U-Net in evaluation of WM, GM and CSF. The data set we used for training and testing comes from iSeg-2017 challenge (http://iseg2017.web.unc.edu).
Mr(Magnetic Resonance ) 영상은 인체 기관의 상태에 관한 많은 정보를 가지고 있어 이것을 분석하여 가시화하면 의료 진단에 유용하게 이용될 수 있다. MR 영상의 가시화는 영상의 획득, 전처리, 조직 분류, 보간, 렌더링의 단계로 이루어진다. 이 단계 중 Mr 영상의 불완전성 때문에 현재 조직 분류 및 보간이 문제로 되어 있다. 본 논문에서는 머리 MR 영상을 대상으로 조직 분류 및 보간에 대한 기법을 제안하고 제안된 기법을 바탕으로 뇌를 3차원 가시화한다. 조직 분류 기법에서는 뇌조직 성분 구성 등 임상 실험에 의해 밝혀진 뇌에 대한 구조적인 지식을 단계적으로 이용한다. 보간 기법은 오목 윤곽선에 사용할 수 있게 동적 탄성 보간기법을 개선하였다. 제안한 구조적인 분류 기법 및 보간 기법을 다른 기법과 비교 평가한다.
In this paper, a new method of phoneme segmentation of handwritten Korean characters using the local graph pattern is proposed. At first, thinning was performed before extracting features. End-point, inflexion-point, branch-point and cross-point were extracted as features. Using these features and the angular relations between these features, local graph pattern was made. When local graph pattern is made, the of strokes is investigated on contacting point. From this process, pattern is simplified as contacting pattern of the basic form and the contacting form we must take into account can be restricted within fixed region, 4therefore phoneme segmentation not influenced by characters form and any other contact in a single character is performed as matching this local graph pattern with base patterns searched ahead. This experiments with 540 characters have been conducted. From the result of this experiment, it is shown that phoneme segmentation is independent of characters form and other contact in a single character to obtain a correct segmentation rate of 95%, manages it efficiently to reduce the time spent in lock operation when the lock.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.