• Title/Summary/Keyword: Segmentation model

Search Result 1,063, Processing Time 0.039 seconds

A Geometric Active Contour Model Using Multi Resolution Level Set Methods (다중 해상도 레벨 세트 방식을 이용한 기하 활성 모델)

  • Kim, Seong-Gon;Kim, Du-Yeong
    • The Transactions of the Korea Information Processing Society
    • /
    • v.6 no.10
    • /
    • pp.2809-2815
    • /
    • 1999
  • Level set, and active contour(snakes) models are extensively used for image segmentation or shape extraction in computer vision. Snakes utilize the energy minimization concepts, and level set is based on the curve evolution in order to extract contours from image data. In general, these two models have their own drawbacks. For instance, snake acts pooly unless it is placed close to the wanted shape boundary, and it has difficult problem when image has multiple objects to be extracted. But, level set method is free of initial curve position problem, and has ability to handle topology of multiple objects. Nevertheless, level set method requires much more calculation time compared to snake model. In this paper, we use good points of two described models and also apply multi resolution algorithm in order to speed up the process without decreasing the performance of the shape extraction.

  • PDF

A Study on the Object Segmentation Using Active Contour Model based MPEG-4 (MPEG-4 기반의 능동윤곽모델을 이용한 스테레오 영상에서의 객체분할에 관한 연구)

  • Kim, Shin-Hyoung;Chun, Byung-Tea;Park, Doo-Yeong;Jang, Jong-Whan
    • Annual Conference of KIPS
    • /
    • 2002.11a
    • /
    • pp.57-60
    • /
    • 2002
  • 본 논문에서는 능동윤곽모델(active contour model)의 잘 알려져 있는 스네이크(snake) 알고리즘을 스테레오영상에 적용하여 좌 우 영상의 disparity 정보를 이용 객체의 경계선을 찾는 알고리즘을 제안한다. 스네이크는 객체의 경계를 얻기 위해 에지정보를 사용하는데 실제 이미지에서 객체의 경계가 아닌 인접한 주위의 강한 애지(edge)에 대해서도 영향을 받게 되는 문제가 있다. 이러한 문제를 해결하기 위해 스테레오영상의 disparity 정보를 이용하여 이를 개선하고 disparity 측정에 사용되는 블록매칭(block matching)방법을 스네이크 알고리즘에 적용시켰다.

  • PDF

A Robust Color Clustering using a Smooth Color Model under Irregular Brightness Variations (Smooth Color Model을 이용한, 불규칙한 조명 변화에 강인한 Color Clustering)

  • Kim, Chi-Ho;You, Bum-Jae;Kim, Hag-Bae;Oh, Sang-Rok
    • Proceedings of the KIEE Conference
    • /
    • 2003.07d
    • /
    • pp.2534-2536
    • /
    • 2003
  • Color는 다른 물체로부터 하나의 물체를 특정짓기 위한 효과적이고 강인한 실마리이므로 color clustering이 많은 주목을 받고 있다. 그러나 불규칙한 조명변화에 의한 color 변이 때문에 color segmentation은 매우 어렵다. 이 논문은 B-spline 곡선을 이용한, HSI color space에서의 intensity 정보를 포함한 신뢰할 수 있는 color modeling 방법을 제안한다. 이것은 비록 HS 평균임에도 불구하고 단색 물체의 color 분포가 조명이 변함에따라 변한다는 사실에 기반한다. 이 접근법을 사용하면 피부색을 가진 영역의 color clustering이 불규칙한 조명변화에 적응될 수 있다.

  • PDF

Organizing Lidar Data Based on Octree Structure

  • Wang, Miao;Tseng, Yi-Hsing
    • Proceedings of the KSRS Conference
    • /
    • 2003.11a
    • /
    • pp.150-152
    • /
    • 2003
  • Laser scanned lidar data record 3D surface information in detail. Exploring valuable spatial information from lidar data is a prerequisite task for its applications, such as DEM generation and 3D building model reconstruction. However, the inherent spatial information is implicit in the abundant, densely and randomly distributed point cloud. This paper proposes a novel method to organize point cloud data, so that further analysis or feature extraction can proceed based on a well organized data model. The principle of the proposed algorithm is to segment point cloud into 3D planes. A split and merge segmentation based on the octree structure is developed for the implementation. Some practical airborne and ground lidar data are tested for demonstration and discussion. We expect this data organization could provide a stepping stone for extracting spatial information from lidar data.

  • PDF

Parameter Estimation of Auto-Binomial Model using Selectionist Relaxation for Segmentation of Texture Images (유전자적 완화법에 의한 자기이항모형의 파라미터 추정과 질감 영상분할)

  • Lee, Seung-U;Kim, Hwang-Su;Park, Yeong-Cheol
    • Journal of KIISE:Software and Applications
    • /
    • v.28 no.3
    • /
    • pp.298-304
    • /
    • 2001
  • Markov 랜덤 필드(MRF)를 이용한 질감 영상의 영역분할을 각 영역을 기술해줄 수 있는 제대로 된 파라미터들을 찾는 것이 가장 중요하다. 종래에는 입력영상의 질감 영역의 수와 그 형태 등을 초기에 적당히 가정하여 파라미터를 찾는 방법을 써왔는데 실제 영상에는 잘 맞지 않았다. 최근에 완화법(Relaxation)을 이용하여 MRF의 파라미터를 찾는 방법이 제안[8]되었는데 오직 일반화된 Ising 모형에서만 사용가능 하였다. 본 논문에서는 비교적 자연영상에 적합한 자기이항 모형(Auto-binomial Model)에 변형된 완화법을 적용시켜 파라미터를 추정하고 질감 영상을 분할해 보았다. 그 결과 이전의 Ising 모형으로는 어려웠던 자연영산의 분할에서 좋은 결과를 얻을 수 있었다.

  • PDF

Customized Model of Cold Chain Logistics Considering Hypergeometric Distribution

  • Chen, Xing;Chuluunsukh, Anudari;Jang, Jun-Ho
    • Journal of Korea Society of Industrial Information Systems
    • /
    • v.26 no.5
    • /
    • pp.37-54
    • /
    • 2021
  • In this study, a customized model (CM) for the efficient operation of cold chain logistics considering the hypergeometric distribution is proposed. The CM focuses on the segmentation market of ready-to-eat foods and juices made from fresh materials. Companies should determine the amount of production by predicting consumer preferences and quantity to ensure high-efficiency production. The CM is represented as a mathematical formulation and implemented using the genetic algorithm (GA). Addition, the relative weights of CM are calculated. Further, the calculated weights are applied to the GA. In the numerical experiment, hypergeometric distribution is used to calculate the relative weights between the range of production quantities and the customized amount. Experiment results are the values of relative weights and the comparison results by average values of handling cost, total cost and CPU time. Finally, the significance of this study is summarized and a future research direction is remarked in conclusion.

Obstacles modeling method in cluttered environments using satellite images and its application to path planning for USV

  • Shi, Binghua;Su, Yixin;Zhang, Huajun;Liu, Jiawen;Wan, Lili
    • International Journal of Naval Architecture and Ocean Engineering
    • /
    • v.11 no.1
    • /
    • pp.202-210
    • /
    • 2019
  • The obstacles modeling is a fundamental and significant issue for path planning and automatic navigation of Unmanned Surface Vehicle (USV). In this study, we propose a novel obstacles modeling method based on high resolution satellite images. It involves two main steps: extraction of obstacle features and construction of convex hulls. To extract the obstacle features, a series of operations such as sea-land segmentation, obstacles details enhancement, and morphological transformations are applied. Furthermore, an efficient algorithm is proposed to mask the obstacles into convex hulls, which mainly includes the cluster analysis of obstacles area and the determination rules of edge points. Experimental results demonstrate that the models achieved by the proposed method and the manual have high similarity. As an application, the model is used to find the optimal path for USV. The study shows that the obstacles modeling method is feasible, and it can be applied to USV path planning.

Segmenting Layers of Retinal OCT Images using cGAN (cGAN을 이용한 OCT 이미지의 층 분할)

  • Kwon, Oh-Heum;Kwon, Ki-Ryong;Song, Ha-Joo
    • Journal of Korea Multimedia Society
    • /
    • v.23 no.12
    • /
    • pp.1476-1485
    • /
    • 2020
  • Segmenting OCT retinal images into layers is important to diagnose and understand the progression of retinal diseases or identify potential symptoms. The task of manually identifying these layers is a difficult task that requires a lot of time and effort even for medical professionals, and therefore, various studies are being conducted to automate this using deep learning technologies. In this paper, we use cGAN-based neural network to automatically segmenting OCT retinal images into seven terrain-type regions defined by six layer boundaries. The network is composed of a Segnet-based generator model and a discriminator model. We also proposed a dynamic programming algorithm for refining the outputs of the network. We performed experiments using public OCT image data set and compared its performance with the Segnet-only version of the network. The experimental results show that the cGAN-based network outperforms Segnet-only version.

Color Space Based Objects Detection System from Video Sequences

  • Alom, Md. Zahangir;Lee, Hyo Jong
    • Annual Conference of KIPS
    • /
    • 2011.11a
    • /
    • pp.347-350
    • /
    • 2011
  • This paper propose a statistical color model of background extraction base on Hue-Saturation-Value(HSV) color space, instead of the traditional RGB space, and shows that it provides a better use of the color information. HSV color space corresponds closely to the human perception of color and it has revealed more accuracy to distinguish shadows [3] [4]. The key feature of this segmentation method is based on processing hue component of color in HSV color space on image area. The HSV color model is used, its color components are efficiently analyzed and treated separately so that the proposed algorithm can adapt to different environmental illumination condition and shadows. Polar and linear statistical operations are used to calculate the background from the video frames. The experimental results show that the proposed background subtraction method can automatically segment video objects robustly and accurately in various illuminating and shadow environments.

The Detection of Multi-class Vehicles using Swin Transformer (Swin Transformer를 이용한 항공사진에서 다중클래스 차량 검출)

  • Lee, Ki-chun;Jeong, Yu-seok;Lee, Chang-woo
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2021.10a
    • /
    • pp.112-114
    • /
    • 2021
  • In order to detect urban conditions, the number of means of transportation and traffic flow are essential factors to be identified. This paper improved the detection system capabilities shown in previous studies using the SwinTransformer model, which showed higher performance than existing convolutional neural networks, by learning various vehicle types using existing Mask R-CNN and introducing today's widely used transformer model to detect certain types of vehicles in urban aerial images.

  • PDF