The Transactions of the Korea Information Processing Society
/
v.6
no.10
/
pp.2809-2815
/
1999
Level set, and active contour(snakes) models are extensively used for image segmentation or shape extraction in computer vision. Snakes utilize the energy minimization concepts, and level set is based on the curve evolution in order to extract contours from image data. In general, these two models have their own drawbacks. For instance, snake acts pooly unless it is placed close to the wanted shape boundary, and it has difficult problem when image has multiple objects to be extracted. But, level set method is free of initial curve position problem, and has ability to handle topology of multiple objects. Nevertheless, level set method requires much more calculation time compared to snake model. In this paper, we use good points of two described models and also apply multi resolution algorithm in order to speed up the process without decreasing the performance of the shape extraction.
Kim, Shin-Hyoung;Chun, Byung-Tea;Park, Doo-Yeong;Jang, Jong-Whan
Annual Conference of KIPS
/
2002.11a
/
pp.57-60
/
2002
본 논문에서는 능동윤곽모델(active contour model)의 잘 알려져 있는 스네이크(snake) 알고리즘을 스테레오영상에 적용하여 좌 우 영상의 disparity 정보를 이용 객체의 경계선을 찾는 알고리즘을 제안한다. 스네이크는 객체의 경계를 얻기 위해 에지정보를 사용하는데 실제 이미지에서 객체의 경계가 아닌 인접한 주위의 강한 애지(edge)에 대해서도 영향을 받게 되는 문제가 있다. 이러한 문제를 해결하기 위해 스테레오영상의 disparity 정보를 이용하여 이를 개선하고 disparity 측정에 사용되는 블록매칭(block matching)방법을 스네이크 알고리즘에 적용시켰다.
Kim, Chi-Ho;You, Bum-Jae;Kim, Hag-Bae;Oh, Sang-Rok
Proceedings of the KIEE Conference
/
2003.07d
/
pp.2534-2536
/
2003
Color는 다른 물체로부터 하나의 물체를 특정짓기 위한 효과적이고 강인한 실마리이므로 color clustering이 많은 주목을 받고 있다. 그러나 불규칙한 조명변화에 의한 color 변이 때문에 color segmentation은 매우 어렵다. 이 논문은 B-spline 곡선을 이용한, HSI color space에서의 intensity 정보를 포함한 신뢰할 수 있는 color modeling 방법을 제안한다. 이것은 비록 HS 평균임에도 불구하고 단색 물체의 color 분포가 조명이 변함에따라 변한다는 사실에 기반한다. 이 접근법을 사용하면 피부색을 가진 영역의 color clustering이 불규칙한 조명변화에 적응될 수 있다.
Laser scanned lidar data record 3D surface information in detail. Exploring valuable spatial information from lidar data is a prerequisite task for its applications, such as DEM generation and 3D building model reconstruction. However, the inherent spatial information is implicit in the abundant, densely and randomly distributed point cloud. This paper proposes a novel method to organize point cloud data, so that further analysis or feature extraction can proceed based on a well organized data model. The principle of the proposed algorithm is to segment point cloud into 3D planes. A split and merge segmentation based on the octree structure is developed for the implementation. Some practical airborne and ground lidar data are tested for demonstration and discussion. We expect this data organization could provide a stepping stone for extracting spatial information from lidar data.
Markov 랜덤 필드(MRF)를 이용한 질감 영상의 영역분할을 각 영역을 기술해줄 수 있는 제대로 된 파라미터들을 찾는 것이 가장 중요하다. 종래에는 입력영상의 질감 영역의 수와 그 형태 등을 초기에 적당히 가정하여 파라미터를 찾는 방법을 써왔는데 실제 영상에는 잘 맞지 않았다. 최근에 완화법(Relaxation)을 이용하여 MRF의 파라미터를 찾는 방법이 제안[8]되었는데 오직 일반화된 Ising 모형에서만 사용가능 하였다. 본 논문에서는 비교적 자연영상에 적합한 자기이항 모형(Auto-binomial Model)에 변형된 완화법을 적용시켜 파라미터를 추정하고 질감 영상을 분할해 보았다. 그 결과 이전의 Ising 모형으로는 어려웠던 자연영산의 분할에서 좋은 결과를 얻을 수 있었다.
Journal of Korea Society of Industrial Information Systems
/
v.26
no.5
/
pp.37-54
/
2021
In this study, a customized model (CM) for the efficient operation of cold chain logistics considering the hypergeometric distribution is proposed. The CM focuses on the segmentation market of ready-to-eat foods and juices made from fresh materials. Companies should determine the amount of production by predicting consumer preferences and quantity to ensure high-efficiency production. The CM is represented as a mathematical formulation and implemented using the genetic algorithm (GA). Addition, the relative weights of CM are calculated. Further, the calculated weights are applied to the GA. In the numerical experiment, hypergeometric distribution is used to calculate the relative weights between the range of production quantities and the customized amount. Experiment results are the values of relative weights and the comparison results by average values of handling cost, total cost and CPU time. Finally, the significance of this study is summarized and a future research direction is remarked in conclusion.
International Journal of Naval Architecture and Ocean Engineering
/
v.11
no.1
/
pp.202-210
/
2019
The obstacles modeling is a fundamental and significant issue for path planning and automatic navigation of Unmanned Surface Vehicle (USV). In this study, we propose a novel obstacles modeling method based on high resolution satellite images. It involves two main steps: extraction of obstacle features and construction of convex hulls. To extract the obstacle features, a series of operations such as sea-land segmentation, obstacles details enhancement, and morphological transformations are applied. Furthermore, an efficient algorithm is proposed to mask the obstacles into convex hulls, which mainly includes the cluster analysis of obstacles area and the determination rules of edge points. Experimental results demonstrate that the models achieved by the proposed method and the manual have high similarity. As an application, the model is used to find the optimal path for USV. The study shows that the obstacles modeling method is feasible, and it can be applied to USV path planning.
Segmenting OCT retinal images into layers is important to diagnose and understand the progression of retinal diseases or identify potential symptoms. The task of manually identifying these layers is a difficult task that requires a lot of time and effort even for medical professionals, and therefore, various studies are being conducted to automate this using deep learning technologies. In this paper, we use cGAN-based neural network to automatically segmenting OCT retinal images into seven terrain-type regions defined by six layer boundaries. The network is composed of a Segnet-based generator model and a discriminator model. We also proposed a dynamic programming algorithm for refining the outputs of the network. We performed experiments using public OCT image data set and compared its performance with the Segnet-only version of the network. The experimental results show that the cGAN-based network outperforms Segnet-only version.
This paper propose a statistical color model of background extraction base on Hue-Saturation-Value(HSV) color space, instead of the traditional RGB space, and shows that it provides a better use of the color information. HSV color space corresponds closely to the human perception of color and it has revealed more accuracy to distinguish shadows [3] [4]. The key feature of this segmentation method is based on processing hue component of color in HSV color space on image area. The HSV color model is used, its color components are efficiently analyzed and treated separately so that the proposed algorithm can adapt to different environmental illumination condition and shadows. Polar and linear statistical operations are used to calculate the background from the video frames. The experimental results show that the proposed background subtraction method can automatically segment video objects robustly and accurately in various illuminating and shadow environments.
Proceedings of the Korean Institute of Information and Commucation Sciences Conference
/
2021.10a
/
pp.112-114
/
2021
In order to detect urban conditions, the number of means of transportation and traffic flow are essential factors to be identified. This paper improved the detection system capabilities shown in previous studies using the SwinTransformer model, which showed higher performance than existing convolutional neural networks, by learning various vehicle types using existing Mask R-CNN and introducing today's widely used transformer model to detect certain types of vehicles in urban aerial images.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.