• Title/Summary/Keyword: Segmentation model

Search Result 1,063, Processing Time 0.042 seconds

Nucleus Recognition of Uterine Cervical Pap-Smears using FCM Clustering Algorithm

  • Kim, Kwang-Baek
    • Journal of information and communication convergence engineering
    • /
    • v.6 no.1
    • /
    • pp.94-99
    • /
    • 2008
  • Segmentation for the region of nucleus in the image of uterine cervical cytodiagnosis is known as the most difficult and important part in the automatic cervical cancer recognition system. In this paper, the region of nucleus is extracted from an image of uterine cervical cytodiagnosis using the HSI model. The characteristics of the nucleus are extracted from the analysis of morphemetric features, densitometric features, colormetric features, and textural features based on the detected region of nucleus area. The classification criterion of a nucleus is defined according to the standard categories of the Bethesda system. The fuzzy C-means clustering algorithm is employed to the extracted nucleus and the results show that the proposed method is efficient in nucleus recognition and uterine cervical Pap-Smears extraction.

Continuous Korean Sign Language Recognition using Automata-based Gesture Segmentation and Hidden Markov Model

  • Kim, Jung-Bae;Park, Kwang-Hyun;Bang, Won-Chul;Z.Zenn Bien;Kim, Jong-Sung
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2001.10a
    • /
    • pp.105.2-105
    • /
    • 2001
  • This paper studies continuous Korean Sign Language (KSL) recognition using color vision. In recognizing gesture words such as sign language, it is a very difficult to segment a continuous sign into individual sign words since the patterns are very complicated and diverse. To solve this problem, we disassemble the KSL into 18 hand motion classes according to their patterns and represent the sign words as some combination of hand motions. Observing the speed and the change of speed of hand motion and using state automata, we reject unintentional gesture motions such as preparatory motion and meaningless movement between sign words. To recognize 18 hand motion classes we adopt Hidden Markov Model (HMM). Using these methods, we recognize 5 KSL sentences and obtain 94% recognition ratio.

  • PDF

Corpus Based Unrestricted vocabulary Mandarin TTS (코퍼스 기반 무제한 단어 중국어 TTS)

  • Yu Zheng;Ha Ju-Hong;Kim Byeongchang;Lee Gary Geunbae
    • Proceedings of the KSPS conference
    • /
    • 2003.10a
    • /
    • pp.175-179
    • /
    • 2003
  • In order to produce a high quality (intelligibility and naturalness) synthesized speech, it is very important to get an accurate grapheme-to-phoneme conversion and prosody model. In this paper, we analyzed Chinese texts using a segmentation, POS tagging and unknown word recognition. We present a grapheme-to-phoneme conversion using a dictionary-based and rule-based method. We constructed a prosody model using a probabilistic method and a decision tree-based error correction method. According to the result from the above analysis, we can successfully select and concatenate exact synthesis unit of syllables from the Chinese Synthesis DB.

  • PDF

An Efficient Volume Rendering for Dental Diagnosis Using Cone Beam CT data (치과 원추형 CT 영상 데이터 분석에 효율적인 볼륨 렌더링 방법)

  • Koo, Yun Mo
    • Journal of Korea Society of Digital Industry and Information Management
    • /
    • v.8 no.1
    • /
    • pp.55-64
    • /
    • 2012
  • The advantage of direct volume rendering is to visualize structures of interest in the volumetric data. However it is still difficult to simultaneously show interior and exterior structures. Recently, cone beam computed tomography(CBCT) has been used for dental diagnosis. Despite of its usefulness, there is a limitation in the detection of interior structures such as pulp and inferior alveolar nerve canal. In this paper, we propose an efficient volume rendering model for visualizing important interior as well as exterior structures of dental CBCT. It is based on the concept of illustrative volume rendering and enhances boundary and silhouette of structures. Moreover, we present a new method that assigns a different color to structures in the rear so as to distinguish the front ones from the rear ones. This proposed rendering model has been implemented on graphics hardware, so that we can achieve interactive performance. In addition, we can render teeth, pulp and canal without cumbersome segmentation step.

Patch-wise Robust Active Shape Model using Point Reliance Measurement

  • Hong, Sungmin;Park, Sanghyun;Yun, Il Dong;Lee, Sang Uk
    • Proceedings of the Korean Society of Broadcast Engineers Conference
    • /
    • 2012.07a
    • /
    • pp.471-472
    • /
    • 2012
  • The active shape model(ASM) is one of the most popular methods among the shape prior based segmentation methods based on its strong shape constraints using the statistic of shape information which is acquired from the training set. ASM has a few drawbacks, such as, the lack of shape variability, and the sensitivity for false locally searched points. In this paper, we suggest the patch-wise robust ASM to overcome the limitations of the ASM. In addition to the SSM, we introduce the patch-wise SSM, to reduce the shape inflexibility and to search reliable points with the point reliance measurement. The quantitative and qualitative results show the robustmness and the accuracy of the proposed method.

  • PDF

A Study on the Implementation of an Automatic Segmentation System of Korean Speech based on the Hidden Markov Model (HMM에 의한 한국어음성의 자동분할 시스템의 구현에 관한 연구)

  • 김윤중;김미경;이인동
    • Journal of Information Technology Application
    • /
    • v.1 no.3_4
    • /
    • pp.1-23
    • /
    • 1999
  • 본 연구에서는 HMM(Hidden Markov Model) 및 Levelbuilding 알고리즘을 이용하여 인식대상 음소열의 표본 집합(훈련패턴 집합)을 입력으로 하는 음성의 자동 분할 시스템을 구현하였다. 본 시스템은 자연스럽게 발음되어진 연결음 음성으로부터 표준 음소모델을 생성한다. 본 시스템의 구성은 초기화 과정, HMM학습과정 그리고 Levelbuilding을 이용한 분리 및 CLustering 과정으로 구성되어 있다. 초기화 과정에서는 제어 정보를 이용하여 훈련패턴 집합으로부터 초기 음소 집합 군을 생성한다. Levelbuilding을 이용한 분리 및 Clustering 단계에서는 음소 모델과 제어 정보를 이용하여 훈련패턴들을 음소 단위로 분리하고, 분리된 후보 음소들을 Clustering하여 음소집합 군을 생성한다. 음소모델의 구성에 변화가 없을 때까지 이 작업을 반복 수행하여 최적의 음소모델을 생성한다. 본 연구에서는 3개 이하의 숫자단어로 구성된 연결되어 음성 패턴을 대상으로 실험하였다. 연결단어에 대한 음소의 표준모델 생성과정에서 가장 중요한 처리인 훈련패턴의 자동분할 과정을 분석하기 위하여 각 반복과정에서 분리된 정보를 그래프로 도시화하여 확인하였다.

  • PDF

Online korean character recognition using letter spotting method (자소 탐색 방법에 의한 온라인 한글 필기 인식)

  • 조범준
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.21 no.6
    • /
    • pp.1379-1389
    • /
    • 1996
  • Hangul character always consists of consonants-vowel-consonants in order. Using this point, this paper proposes an approach to design a model for spotting each letter in Hangul, and then recognize characters based on the spotting results. The network model consist of a set of HMMs. The letter search is carried out by Viterbi algorithm, while character recognition is performed by searching the lattice of letter hypotheses. Experimental results show that, in spite of simple architecture of recognition, the performance is quite high reaching 87.47% for discrete regular characters. In particular the approach shows highly plausible segmentation of letters in characters.

  • PDF

Spatio-Temporal Analysis of Trajectory for Pedestrian Activity Recognition

  • Kim, Young-Nam;Park, Jin-Hee;Kim, Moon-Hyun
    • Journal of Electrical Engineering and Technology
    • /
    • v.13 no.2
    • /
    • pp.961-968
    • /
    • 2018
  • Recently, researches on automatic recognition of human activities have been actively carried out with the emergence of various intelligent systems. Since a large amount of visual data can be secured through Closed Circuit Television, it is required to recognize human behavior in a dynamic situation rather than a static situation. In this paper, we propose new intelligent human activity recognition model using the trajectory information extracted from the video sequence. The proposed model consists of three steps: segmentation and partitioning of trajectory step, feature extraction step, and behavioral learning step. First, the entire trajectory is fuzzy partitioned according to the motion characteristics, and then temporal features and spatial features are extracted. Using the extracted features, four pedestrian behaviors were modeled by decision tree learning algorithm and performance evaluation was performed. The experiments in this paper were conducted using Caviar data sets. Experimental results show that trajectory provides good activity recognition accuracy by extracting instantaneous property and distinctive regional property.

The preprocessing effect using K-means clustering and merging algorithms in cardiac left ventricle segmentation

  • Cho, Ik-Hwan;Do, Ki-Bum;Oh, Jung-Su;Song, In-Chan;Chang, Kee-Hyun;Jeong, Dong-Seok
    • Proceedings of the KSMRM Conference
    • /
    • 2002.11a
    • /
    • pp.126-126
    • /
    • 2002
  • Purpose: For quantitative analysis of the cardiac diseases, it is necessary to segment the left-ventricle(LV) in MR cardiac images. Snake or active contour model has been used to segment LV boundary. In using these models, however, the contour of the LV may not converge to the desirable one because the contour may fall into local minimum value due to image artifact in inner region of the LV Therefore, in this paper, we propose the new preprocessing method using K-means clustering and merging algorithms that can improve the performance of the active contour model.

  • PDF

Object Extraction Technique Adequate for Radial Shape's RADAR Signal Structure (방사선 레이다 신호 구조에 적합한 물체 추적 기법)

  • 김도현;박은경;차의영
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.9 no.7
    • /
    • pp.536-546
    • /
    • 2003
  • We propose an object extraction technique adequate for the radial shape's radar signal structure for the purpose of implementing ARPA(Automatic Radar Plotting Aid) installed in the vessel. The radar signal data are processed by interpolation and accumulation to acquire a qualified image. The objects of the radar image have characteristics of having different shape and size as it gets far from the center, and it is not adequate for clustering generally. Therefore, this study designs a new vigilance distance model of elliptical shape and adopts this model in the ART2 neural network. We prove that the proposed clustering method makes it possible to extract objects adaptively and to separate the connected objects effectively.